YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Study of Fuel Composition, Burner Material, and Tip Temperature Effects on Flashback of Enclosed Jet Flame

    Source: Journal of Engineering for Gas Turbines and Power:;2013:;volume( 135 ):;issue: 012::page 121504
    Author:
    Duan, Zhixuan
    ,
    Shaffer, Brendan
    ,
    McDonell, Vincent
    DOI: 10.1115/1.4025129
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Flashback is a key challenge for low NOx premixed combustion of high hydrogen content fuels. Previous work on jet burner configurations has systematically investigated the impact of fuel composition on flashback propensity, and noted that burner tip temperature played an important role on flashback, yet did not quantify any specific effect (Shaffer, B., Duan, Z., and McDonell, V., 2013, “Study of Fuel Composition Effects on Flashback Using a Confined Jet Flame Burner,â€‌ ASME J. Eng. Gas Turb. Power, 135(1), p. 011502). The present work further investigates the coupling of flashback with burner tip temperature and leads to models for flashback propensity as a function of parameters studied. To achieve this, a jet burner configuration with interchangeable burner materials was developed along with automated flashback detection and rim temperature monitoring. An inline heater provides preheated air up to 810 K. Key observations include that for a given condition, tip temperature of a quartz burner at flashback is higher than that of a stainless burner. As a result, the flashback propensity of a quartz tube is about double of that of a stainless tube. A polynomial model based on analysis of variance is presented and shows that, if the tip temperature is introduced as a parameter, better correlations result. A physical model is developed and illustrates that the critical velocity gradient is proportional to the laminar flame speed computed using the measured tip temperature. The addition of multiple parameters further refined the prediction of the flashback propensity, and the effects of materials are discussed qualitatively using a simple heat transfer analysis.
    • Download: (1.982Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Study of Fuel Composition, Burner Material, and Tip Temperature Effects on Flashback of Enclosed Jet Flame

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/151731
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorDuan, Zhixuan
    contributor authorShaffer, Brendan
    contributor authorMcDonell, Vincent
    date accessioned2017-05-09T00:58:37Z
    date available2017-05-09T00:58:37Z
    date issued2013
    identifier issn1528-8919
    identifier othergtp_135_12_121504.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/151731
    description abstractFlashback is a key challenge for low NOx premixed combustion of high hydrogen content fuels. Previous work on jet burner configurations has systematically investigated the impact of fuel composition on flashback propensity, and noted that burner tip temperature played an important role on flashback, yet did not quantify any specific effect (Shaffer, B., Duan, Z., and McDonell, V., 2013, “Study of Fuel Composition Effects on Flashback Using a Confined Jet Flame Burner,â€‌ ASME J. Eng. Gas Turb. Power, 135(1), p. 011502). The present work further investigates the coupling of flashback with burner tip temperature and leads to models for flashback propensity as a function of parameters studied. To achieve this, a jet burner configuration with interchangeable burner materials was developed along with automated flashback detection and rim temperature monitoring. An inline heater provides preheated air up to 810 K. Key observations include that for a given condition, tip temperature of a quartz burner at flashback is higher than that of a stainless burner. As a result, the flashback propensity of a quartz tube is about double of that of a stainless tube. A polynomial model based on analysis of variance is presented and shows that, if the tip temperature is introduced as a parameter, better correlations result. A physical model is developed and illustrates that the critical velocity gradient is proportional to the laminar flame speed computed using the measured tip temperature. The addition of multiple parameters further refined the prediction of the flashback propensity, and the effects of materials are discussed qualitatively using a simple heat transfer analysis.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleStudy of Fuel Composition, Burner Material, and Tip Temperature Effects on Flashback of Enclosed Jet Flame
    typeJournal Paper
    journal volume135
    journal issue12
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4025129
    journal fristpage121504
    journal lastpage121504
    identifier eissn0742-4795
    treeJournal of Engineering for Gas Turbines and Power:;2013:;volume( 135 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian