YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Statistical Manufacturing Model of Printing Technology

    Source: Journal of Electronic Packaging:;2013:;volume( 135 ):;issue: 001::page 11004
    Author:
    Kim, Nam
    ,
    Luna, Sarah
    ,
    Lee, Jung
    ,
    Jeong, Tae
    DOI: 10.1115/1.4007450
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: There has been an evident increase in the demand for accurate and complex patterns for particles used in microsized electronic devices. Direct printing technology has been promoted as a solution for these needs, as the development of this technology provides both economical and environmental benefits, as well as being a time and energy saving process. Research in the field of printing technologies is still in the initial stages, involving the study of physical and chemical properties of printing materials. There are several methods currently using direct printing methods: microdispensing deposition write (MDDW), maskless mesoscale materials deposition (M3D), and inkjet printing. This study explores the direct printing methods of sequential and randomized printing associated with MDDW, M3D, and inkjet printing using computer simulations compared with actual experimentations. Sequential printing involves depositing particles onto the substrate in a specific order based on particle size. This method is associated with MDDW, where a relatively high viscous ink is dispensed onto the substrate so that particle sizes maintain an order in relation to one another, effectively producing a higher packing factor. Randomized printing involves the dispensing of various sizes of particles onto the substrate in a random order, as in inkjet printing. With this process, the probability of obtaining an efficient packing factor is unlikely and decreases even more with particle size. Therefore, the monolayer method, involving the deposition of individual particles, was developed to increase the packing factor when using the inkjet process. The results presented in this study proved that monolayering methods coincide with the projections predicted by the computer simulation. Sequential packing (MDDW) provides a shorter and higher range of packing factors than that of random packing sequences (ink jet); thus showing sequential packing to be the more efficient method. Sequential packing is closely related to the printing of high viscosity ink because of the higher packing factor that this method provides. An ink with increased viscosity allows for better conductivity which is essential in the development of improved nanoprinting technologies. This study provides evidence for the most efficient means of increasing the packing factor of particles; these methods offer the opportunity for technological advancement and commercialization of nanoprinting materials.
    • Download: (1.346Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Statistical Manufacturing Model of Printing Technology

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/151400
    Collections
    • Journal of Electronic Packaging

    Show full item record

    contributor authorKim, Nam
    contributor authorLuna, Sarah
    contributor authorLee, Jung
    contributor authorJeong, Tae
    date accessioned2017-05-09T00:57:37Z
    date available2017-05-09T00:57:37Z
    date issued2013
    identifier issn1528-9044
    identifier otherep_135_1_011004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/151400
    description abstractThere has been an evident increase in the demand for accurate and complex patterns for particles used in microsized electronic devices. Direct printing technology has been promoted as a solution for these needs, as the development of this technology provides both economical and environmental benefits, as well as being a time and energy saving process. Research in the field of printing technologies is still in the initial stages, involving the study of physical and chemical properties of printing materials. There are several methods currently using direct printing methods: microdispensing deposition write (MDDW), maskless mesoscale materials deposition (M3D), and inkjet printing. This study explores the direct printing methods of sequential and randomized printing associated with MDDW, M3D, and inkjet printing using computer simulations compared with actual experimentations. Sequential printing involves depositing particles onto the substrate in a specific order based on particle size. This method is associated with MDDW, where a relatively high viscous ink is dispensed onto the substrate so that particle sizes maintain an order in relation to one another, effectively producing a higher packing factor. Randomized printing involves the dispensing of various sizes of particles onto the substrate in a random order, as in inkjet printing. With this process, the probability of obtaining an efficient packing factor is unlikely and decreases even more with particle size. Therefore, the monolayer method, involving the deposition of individual particles, was developed to increase the packing factor when using the inkjet process. The results presented in this study proved that monolayering methods coincide with the projections predicted by the computer simulation. Sequential packing (MDDW) provides a shorter and higher range of packing factors than that of random packing sequences (ink jet); thus showing sequential packing to be the more efficient method. Sequential packing is closely related to the printing of high viscosity ink because of the higher packing factor that this method provides. An ink with increased viscosity allows for better conductivity which is essential in the development of improved nanoprinting technologies. This study provides evidence for the most efficient means of increasing the packing factor of particles; these methods offer the opportunity for technological advancement and commercialization of nanoprinting materials.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleStatistical Manufacturing Model of Printing Technology
    typeJournal Paper
    journal volume135
    journal issue1
    journal titleJournal of Electronic Packaging
    identifier doi10.1115/1.4007450
    journal fristpage11004
    journal lastpage11004
    identifier eissn1043-7398
    treeJournal of Electronic Packaging:;2013:;volume( 135 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian