YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Exponential Synchronization of Stochastic Reaction Diffusion Fuzzy Cohen Grossberg Neural Networks With Time Varying Delays Via Periodically Intermittent Control

    Source: Journal of Dynamic Systems, Measurement, and Control:;2013:;volume( 135 ):;issue: 006::page 61009
    Author:
    Gan, Qintao
    ,
    Li, Yang
    DOI: 10.1115/1.4025157
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, the exponential synchronization problem for fuzzy CohenGrossberg neural networks with timevarying delays, stochastic noise disturbance, and reactiondiffusion effects are investigated. By introducing a novel LyapunovKrasovskii functional with the idea of delay partitioning, a periodically intermittent controller is developed to derive sufficient conditions ensuring the addressed neural networks to be exponentially synchronized in terms of pnorm. The results extend and improve upon earlier work. A numerical example is provided to show the effectiveness of the proposed theories.
    • Download: (1.271Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Exponential Synchronization of Stochastic Reaction Diffusion Fuzzy Cohen Grossberg Neural Networks With Time Varying Delays Via Periodically Intermittent Control

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/151375
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorGan, Qintao
    contributor authorLi, Yang
    date accessioned2017-05-09T00:57:33Z
    date available2017-05-09T00:57:33Z
    date issued2013
    identifier issn0022-0434
    identifier otherds_135_06_061009.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/151375
    description abstractIn this paper, the exponential synchronization problem for fuzzy CohenGrossberg neural networks with timevarying delays, stochastic noise disturbance, and reactiondiffusion effects are investigated. By introducing a novel LyapunovKrasovskii functional with the idea of delay partitioning, a periodically intermittent controller is developed to derive sufficient conditions ensuring the addressed neural networks to be exponentially synchronized in terms of pnorm. The results extend and improve upon earlier work. A numerical example is provided to show the effectiveness of the proposed theories.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExponential Synchronization of Stochastic Reaction Diffusion Fuzzy Cohen Grossberg Neural Networks With Time Varying Delays Via Periodically Intermittent Control
    typeJournal Paper
    journal volume135
    journal issue6
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.4025157
    journal fristpage61009
    journal lastpage61009
    identifier eissn1528-9028
    treeJournal of Dynamic Systems, Measurement, and Control:;2013:;volume( 135 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian