YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Parameter Dependent â„‹âˆ‍ Filtering for Linear Time Varying Systems

    Source: Journal of Dynamic Systems, Measurement, and Control:;2013:;volume( 135 ):;issue: 002::page 21006
    Author:
    Zhang, Hui
    ,
    Shi, Yang
    DOI: 10.1115/1.4007553
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, we investigate the filter design problem for linear continuoustime systems with parameter variations in system matrices. The parameter variations are assumed to belong to a polytope with finite and known vertices. The designed filter parameters and the constructed Lyapunov function are both dependent on the online measured variations. A new sufficient condition for the existence of parameterdependent filters is established and it can guarantee that the filtering error dynamic system is asymptotically stable and can satisfy the prescribed â„‹âˆ‍ norm bound. Then, the design of the filter is proposed by solving a set of linear matrix inequalities (LMIs). Simulation studies and comparison examples are provided to illustrate the effectiveness of the proposed method.
    • Download: (399.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Parameter Dependent â„‹âˆ‍ Filtering for Linear Time Varying Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/151270
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorZhang, Hui
    contributor authorShi, Yang
    date accessioned2017-05-09T00:57:17Z
    date available2017-05-09T00:57:17Z
    date issued2013
    identifier issn0022-0434
    identifier otherds_135_2_021006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/151270
    description abstractIn this paper, we investigate the filter design problem for linear continuoustime systems with parameter variations in system matrices. The parameter variations are assumed to belong to a polytope with finite and known vertices. The designed filter parameters and the constructed Lyapunov function are both dependent on the online measured variations. A new sufficient condition for the existence of parameterdependent filters is established and it can guarantee that the filtering error dynamic system is asymptotically stable and can satisfy the prescribed â„‹âˆ‍ norm bound. Then, the design of the filter is proposed by solving a set of linear matrix inequalities (LMIs). Simulation studies and comparison examples are provided to illustrate the effectiveness of the proposed method.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleParameter Dependent â„‹âˆ‍ Filtering for Linear Time Varying Systems
    typeJournal Paper
    journal volume135
    journal issue2
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.4007553
    journal fristpage21006
    journal lastpage21006
    identifier eissn1528-9028
    treeJournal of Dynamic Systems, Measurement, and Control:;2013:;volume( 135 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian