YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Experimental and Computational Study on Moisture Induced Epoxy Swelling in Non-hermetic Optoelectronic Packages

    Source: Journal of Electronic Packaging:;2012:;volume( 134 ):;issue: 001::page 11007
    Author:
    Sushma Madduri
    ,
    William Infantolino
    ,
    Bahgat.G Sammakia
    DOI: 10.1115/1.4005911
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Moisture induced epoxy swelling is a potential failure mechanism in nonhermetic packages. Epoxy materials used in the package absorb moisture and swell in a relatively humid environment. This will result in hygroscopic stresses in the material that can eventually lead to failure. The coefficient of hygroscopic swelling (CHS) is a material property that characterizes moisture induced swelling in the material. It is defined as the ratio of hygroscopic strain to the moisture concentration in the material. Prior research investigated the measurement of CHS experimentally using techniques such as thermo mechanical analysis (TMA) (Ardebili et al. , 2003, “Hygroscopic Swelling and Sorption Characteristics of Epoxy Molding Compounds Used in Electronic Packaging,” IEEE Trans. Compon. Packag. Technol., 26 (1), pp. 206–214; Mckague et al. , 1978, “Swelling and Glass Transition Relations for epoxy Matrix Material in Humid Environments,” J. Appl. Polym. Sci., 22 , pp. 1643–1654.), Moiré interferometry (Han et al. , 2003, “Measurement of the Hygroscopic Swelling Coefficient in Mold Compounds Using Moire Interferometer Experimental Techniques,” IEEE Trans. Compon. Packag. Technol., 27 (4), pp. 40–44), and digital image correlation (DIC) (Park and Zhang, 2007, “Investigation of Hygroscopic swelling of Polymers in Freezing Temperature,” ASME International Mechanical Engineering Congress and Exposition). Some of these studies recommended investigation of improved measurement techniques, while others made some procedural assumptions that may not be applicable for all materials. One of the goals of this study was to investigate an improved technique for CHS measurement and helps to better understand the various factors that affect the measurement. The DIC technique was used to measure the moisture swelling of the epoxy material considered for use in the package. Moisture loss during the measurement results in a change in moisture concentration in the sample. While it may be thought that the moisture loss during the DIC scan can be assumed negligible due to the short test time compared with other methods, this assumption did not hold well for the current epoxy material. The ramp rate chosen for the test affects the moisture loss. It introduces a level of nonuniformity in temperature and moisture distribution in the sample. A suitable value that takes into account both of these effects was determined. The moisture loss measured during the DIC scan was accounted for in the CHS computation. In addition to this, the temperature and concentration dependence of the CHS was determined. Results indicated that the temperature and concentration effects are small for the current test material within the test temperature range. The moisture loss found during the DIC measurement leads to a nonuniform moisture distribution in the sample. This was characterized by using experimental and computational methods and the effect on the measurement was determined.
    keyword(s): Temperature AND Epoxy adhesives ,
    • Download: (1.684Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Experimental and Computational Study on Moisture Induced Epoxy Swelling in Non-hermetic Optoelectronic Packages

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/148608
    Collections
    • Journal of Electronic Packaging

    Show full item record

    contributor authorSushma Madduri
    contributor authorWilliam Infantolino
    contributor authorBahgat.G Sammakia
    date accessioned2017-05-09T00:49:33Z
    date available2017-05-09T00:49:33Z
    date copyrightMarch, 2012
    date issued2012
    identifier issn1528-9044
    identifier otherJEPAE4-26323#011007_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/148608
    description abstractMoisture induced epoxy swelling is a potential failure mechanism in nonhermetic packages. Epoxy materials used in the package absorb moisture and swell in a relatively humid environment. This will result in hygroscopic stresses in the material that can eventually lead to failure. The coefficient of hygroscopic swelling (CHS) is a material property that characterizes moisture induced swelling in the material. It is defined as the ratio of hygroscopic strain to the moisture concentration in the material. Prior research investigated the measurement of CHS experimentally using techniques such as thermo mechanical analysis (TMA) (Ardebili et al. , 2003, “Hygroscopic Swelling and Sorption Characteristics of Epoxy Molding Compounds Used in Electronic Packaging,” IEEE Trans. Compon. Packag. Technol., 26 (1), pp. 206–214; Mckague et al. , 1978, “Swelling and Glass Transition Relations for epoxy Matrix Material in Humid Environments,” J. Appl. Polym. Sci., 22 , pp. 1643–1654.), Moiré interferometry (Han et al. , 2003, “Measurement of the Hygroscopic Swelling Coefficient in Mold Compounds Using Moire Interferometer Experimental Techniques,” IEEE Trans. Compon. Packag. Technol., 27 (4), pp. 40–44), and digital image correlation (DIC) (Park and Zhang, 2007, “Investigation of Hygroscopic swelling of Polymers in Freezing Temperature,” ASME International Mechanical Engineering Congress and Exposition). Some of these studies recommended investigation of improved measurement techniques, while others made some procedural assumptions that may not be applicable for all materials. One of the goals of this study was to investigate an improved technique for CHS measurement and helps to better understand the various factors that affect the measurement. The DIC technique was used to measure the moisture swelling of the epoxy material considered for use in the package. Moisture loss during the measurement results in a change in moisture concentration in the sample. While it may be thought that the moisture loss during the DIC scan can be assumed negligible due to the short test time compared with other methods, this assumption did not hold well for the current epoxy material. The ramp rate chosen for the test affects the moisture loss. It introduces a level of nonuniformity in temperature and moisture distribution in the sample. A suitable value that takes into account both of these effects was determined. The moisture loss measured during the DIC scan was accounted for in the CHS computation. In addition to this, the temperature and concentration dependence of the CHS was determined. Results indicated that the temperature and concentration effects are small for the current test material within the test temperature range. The moisture loss found during the DIC measurement leads to a nonuniform moisture distribution in the sample. This was characterized by using experimental and computational methods and the effect on the measurement was determined.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Experimental and Computational Study on Moisture Induced Epoxy Swelling in Non-hermetic Optoelectronic Packages
    typeJournal Paper
    journal volume134
    journal issue1
    journal titleJournal of Electronic Packaging
    identifier doi10.1115/1.4005911
    journal fristpage11007
    identifier eissn1043-7398
    keywordsTemperature AND Epoxy adhesives
    treeJournal of Electronic Packaging:;2012:;volume( 134 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian