YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Design Parameters on Drop Test Performance of Wafer Level Chip Scale Packages

    Source: Journal of Electronic Packaging:;2012:;volume( 134 ):;issue: 002::page 20905
    Author:
    P. Tumne
    ,
    V. Venkatadri
    ,
    S. Kudtarkar
    ,
    D. Santos
    ,
    R. Havens
    ,
    M. Delaus
    ,
    K. Srihari
    DOI: 10.1115/1.4005906
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Today’s consumer market demands electronics that are smaller, faster, and cheaper. To cater to these demands, novel materials, new designs, and new packaging technologies are introduced frequently. Wafer level chip scale package (WLCSP) is one of the emerging package technologies that have the key advantages of reduced cost and smaller footprint. The portable consumer electronics are frequently dropped; hence, the emphasis of reliability is shifting toward the study of effects of mechanical shock loading increasingly. Mechanical loading typically induces brittle fractures (also known as intermetallic failures) between the solder bumps and the bond pads at the silicon die side. This type of failure mechanism is typically characterized by the board level drop test. WLCSP is a variant of the flip-chip interconnection technique. In WLCSPs, the active side of the die is inverted and connected to the printed circuit board (PCB) by solder balls. The size of these solder balls is typically large enough (300 μm pre-reflow for 0.5-mm pitch and 250 μm pre-reflow for 0.4-mm pitch) to avoid the use of underfill that is required for the flip-chip interconnects. Several variations are incorporated in the package design parameters to meet the performance, reliability, and footprint requirements of the package assembly. The design parameters investigated in this effort are solder ball compositions with different silver (Ag) contents, backside lamination with different thicknesses, WLCSP type—direct and redistribution layer (RDL), bond pad thickness, and sputtered versus electroplated under bump metallurgy (UBM) deposition methods for 8 × 8, 9 × 9, and 10 × 10 array sizes. The test vehicles built using these design parameters were drop tested using Joint Electron Devices Engineering Council (JEDEC) recommended test boards and conditions as per JESD22-B11. Cross-sectional analysis was used to identify, confirm, and segregate the intermetallic and bulk solder failures. The objective of this research was to quantify the effects and interactions of WLCSP design parameters through drop test. The drop test data were collected and treated as a right censored data. Further, it was analyzed by fitting empirical distributions using the grouped and ungrouped data approach. Data analysis showed that design parameters had a significant effect on the drop performance and played a vital role in influencing the package reliability.
    keyword(s): Drops , Design , Failure , Thickness , Solders , Intermetallic compounds , Semiconductor wafers , Reliability AND Alloys ,
    • Download: (1.872Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Design Parameters on Drop Test Performance of Wafer Level Chip Scale Packages

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/148588
    Collections
    • Journal of Electronic Packaging

    Show full item record

    contributor authorP. Tumne
    contributor authorV. Venkatadri
    contributor authorS. Kudtarkar
    contributor authorD. Santos
    contributor authorR. Havens
    contributor authorM. Delaus
    contributor authorK. Srihari
    date accessioned2017-05-09T00:49:27Z
    date available2017-05-09T00:49:27Z
    date copyrightJune, 2012
    date issued2012
    identifier issn1528-9044
    identifier otherJEPAE4-26326#020905_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/148588
    description abstractToday’s consumer market demands electronics that are smaller, faster, and cheaper. To cater to these demands, novel materials, new designs, and new packaging technologies are introduced frequently. Wafer level chip scale package (WLCSP) is one of the emerging package technologies that have the key advantages of reduced cost and smaller footprint. The portable consumer electronics are frequently dropped; hence, the emphasis of reliability is shifting toward the study of effects of mechanical shock loading increasingly. Mechanical loading typically induces brittle fractures (also known as intermetallic failures) between the solder bumps and the bond pads at the silicon die side. This type of failure mechanism is typically characterized by the board level drop test. WLCSP is a variant of the flip-chip interconnection technique. In WLCSPs, the active side of the die is inverted and connected to the printed circuit board (PCB) by solder balls. The size of these solder balls is typically large enough (300 μm pre-reflow for 0.5-mm pitch and 250 μm pre-reflow for 0.4-mm pitch) to avoid the use of underfill that is required for the flip-chip interconnects. Several variations are incorporated in the package design parameters to meet the performance, reliability, and footprint requirements of the package assembly. The design parameters investigated in this effort are solder ball compositions with different silver (Ag) contents, backside lamination with different thicknesses, WLCSP type—direct and redistribution layer (RDL), bond pad thickness, and sputtered versus electroplated under bump metallurgy (UBM) deposition methods for 8 × 8, 9 × 9, and 10 × 10 array sizes. The test vehicles built using these design parameters were drop tested using Joint Electron Devices Engineering Council (JEDEC) recommended test boards and conditions as per JESD22-B11. Cross-sectional analysis was used to identify, confirm, and segregate the intermetallic and bulk solder failures. The objective of this research was to quantify the effects and interactions of WLCSP design parameters through drop test. The drop test data were collected and treated as a right censored data. Further, it was analyzed by fitting empirical distributions using the grouped and ungrouped data approach. Data analysis showed that design parameters had a significant effect on the drop performance and played a vital role in influencing the package reliability.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffect of Design Parameters on Drop Test Performance of Wafer Level Chip Scale Packages
    typeJournal Paper
    journal volume134
    journal issue2
    journal titleJournal of Electronic Packaging
    identifier doi10.1115/1.4005906
    journal fristpage20905
    identifier eissn1043-7398
    keywordsDrops
    keywordsDesign
    keywordsFailure
    keywordsThickness
    keywordsSolders
    keywordsIntermetallic compounds
    keywordsSemiconductor wafers
    keywordsReliability AND Alloys
    treeJournal of Electronic Packaging:;2012:;volume( 134 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian