YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optimal Parameter Estimation for Long-Term Prediction in the Presence of Model Mismatch

    Source: Journal of Dynamic Systems, Measurement, and Control:;2012:;volume( 134 ):;issue: 004::page 41010
    Author:
    Ryan Sangjun Lee
    ,
    Gregery T. Buzzard
    ,
    Peter H. Meckl
    DOI: 10.1115/1.4005497
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: For nonlinear multi-input multi-output (MIMO) systems such as multilink robotic manipulators, finding a correct, physically derived model structure is almost impossible, so that significant model mismatch is nearly inevitable. Moreover, in the presence of model mismatch, the use of least-squares minimization of the one-step-ahead prediction error (residual error) to estimate unknown parameters in a given model structure often leads to model predictions that are extremely inaccurate beyond a short time interval. In this paper, we develop a method for optimal parameter estimation for accurate long-term prediction models in the presence of significant model mismatch in practice. For many practical cases, where a correct model and the correct number of degrees of freedom for a given model structure are unknown, we combine the use of long-term prediction error with frequency-based regularization to produce more accurate long-term prediction models for actual MIMO nonlinear systems.
    keyword(s): Simulation , Errors , Parameter estimation , Simulation results , Fittings AND Manipulators ,
    • Download: (7.125Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optimal Parameter Estimation for Long-Term Prediction in the Presence of Model Mismatch

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/148473
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorRyan Sangjun Lee
    contributor authorGregery T. Buzzard
    contributor authorPeter H. Meckl
    date accessioned2017-05-09T00:49:09Z
    date available2017-05-09T00:49:09Z
    date copyrightJuly, 2012
    date issued2012
    identifier issn0022-0434
    identifier otherJDSMAA-26589#041010_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/148473
    description abstractFor nonlinear multi-input multi-output (MIMO) systems such as multilink robotic manipulators, finding a correct, physically derived model structure is almost impossible, so that significant model mismatch is nearly inevitable. Moreover, in the presence of model mismatch, the use of least-squares minimization of the one-step-ahead prediction error (residual error) to estimate unknown parameters in a given model structure often leads to model predictions that are extremely inaccurate beyond a short time interval. In this paper, we develop a method for optimal parameter estimation for accurate long-term prediction models in the presence of significant model mismatch in practice. For many practical cases, where a correct model and the correct number of degrees of freedom for a given model structure are unknown, we combine the use of long-term prediction error with frequency-based regularization to produce more accurate long-term prediction models for actual MIMO nonlinear systems.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOptimal Parameter Estimation for Long-Term Prediction in the Presence of Model Mismatch
    typeJournal Paper
    journal volume134
    journal issue4
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.4005497
    journal fristpage41010
    identifier eissn1528-9028
    keywordsSimulation
    keywordsErrors
    keywordsParameter estimation
    keywordsSimulation results
    keywordsFittings AND Manipulators
    treeJournal of Dynamic Systems, Measurement, and Control:;2012:;volume( 134 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian