YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Comparison of Linear, Nonlinear, Hysteretic, and Probabilistic Models for Magnetorheological Fluid Dampers

    Source: Journal of Dynamic Systems, Measurement, and Control:;2010:;volume( 132 ):;issue: 006::page 61403
    Author:
    Corina Sandu
    ,
    Steve Southward
    ,
    Russell Richards
    DOI: 10.1115/1.4002480
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Magnetorheological (MR) fluid dampers have a semicontrollable damping force output that is dependent on the current input to the damper, as well as the relative velocity. The mechanical construction, fluid properties, and embedded electromagnet result in a dynamic damper response. This study evaluates four modeling approaches with respect to predicting the multi-input single-output behavior of an experimental MR damper when the inputs are band-limited random signals typically encountered in primary suspension applications. The first two models in this study are static in the sense that there is a unique output for any given set of inputs and no dynamics is present in either model. The third model incorporates a dynamic filter with the nonlinear model to exhibit hysteretic effects, which are known to exist in actual MR dampers. The fourth model is probabilistic and illustrates the dynamic nature of an actual MR damper. The results of this study clearly show the importance of nonlinear and dynamic effects in magnetorheological damper response. This study also highlights the importance of characterizing magnetorheological dampers using excitation signals that are representative of an actual implementation.
    keyword(s): Force , Fluids , Dampers AND Signals ,
    • Download: (1.515Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Comparison of Linear, Nonlinear, Hysteretic, and Probabilistic Models for Magnetorheological Fluid Dampers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/142814
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorCorina Sandu
    contributor authorSteve Southward
    contributor authorRussell Richards
    date accessioned2017-05-09T00:37:00Z
    date available2017-05-09T00:37:00Z
    date copyrightNovember, 2010
    date issued2010
    identifier issn0022-0434
    identifier otherJDSMAA-26535#061403_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/142814
    description abstractMagnetorheological (MR) fluid dampers have a semicontrollable damping force output that is dependent on the current input to the damper, as well as the relative velocity. The mechanical construction, fluid properties, and embedded electromagnet result in a dynamic damper response. This study evaluates four modeling approaches with respect to predicting the multi-input single-output behavior of an experimental MR damper when the inputs are band-limited random signals typically encountered in primary suspension applications. The first two models in this study are static in the sense that there is a unique output for any given set of inputs and no dynamics is present in either model. The third model incorporates a dynamic filter with the nonlinear model to exhibit hysteretic effects, which are known to exist in actual MR dampers. The fourth model is probabilistic and illustrates the dynamic nature of an actual MR damper. The results of this study clearly show the importance of nonlinear and dynamic effects in magnetorheological damper response. This study also highlights the importance of characterizing magnetorheological dampers using excitation signals that are representative of an actual implementation.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleComparison of Linear, Nonlinear, Hysteretic, and Probabilistic Models for Magnetorheological Fluid Dampers
    typeJournal Paper
    journal volume132
    journal issue6
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.4002480
    journal fristpage61403
    identifier eissn1528-9028
    keywordsForce
    keywordsFluids
    keywordsDampers AND Signals
    treeJournal of Dynamic Systems, Measurement, and Control:;2010:;volume( 132 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian