YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Model of Nonlinear Fatigue-Creep (Dwell) Interactions

    Source: Journal of Engineering for Gas Turbines and Power:;2009:;volume( 131 ):;issue: 003::page 32101
    Author:
    Xijia Wu
    DOI: 10.1115/1.2982152
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A nonlinear creep/dwell interaction model is derived based on nucleation and propagation of a surface fatigue crack and its coalescence with creep/dwell damages (cavities or wedge cracks) along its path inside the material, which results in the total damage accumulation rate as given by da/dN=(1+(lc+lz)/λ){(da/dN)f+(da/dN)env}, where (da/dN)f is the pure fatigue crack growth rate, (da/dN)env is the environment-assisted crack growth rate, lc/lz is the cavity/wedge crack size, and λ is the average spacing between the internal cavities or cracks. Since wedge cracks are usually present in the form of dislocation pile-ups at low temperatures and cavitation usually occurs at high temperatures, the model attempts to reconcile the creep-/dwell-fatigue phenomena over a broad temperature range of engineering concern. In particular, the model has been used to explain the dwell fatigue of titanium alloys and high temperature creep-fatigue interactions in Ni-base superalloys under tensile cyclic creep rupture, compressive cyclic creep rupture, and tension/compression-hold strain controlled cyclic test conditions.
    • Download: (372.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Model of Nonlinear Fatigue-Creep (Dwell) Interactions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/140466
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorXijia Wu
    date accessioned2017-05-09T00:32:40Z
    date available2017-05-09T00:32:40Z
    date copyrightMay, 2009
    date issued2009
    identifier issn1528-8919
    identifier otherJETPEZ-27066#032101_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/140466
    description abstractA nonlinear creep/dwell interaction model is derived based on nucleation and propagation of a surface fatigue crack and its coalescence with creep/dwell damages (cavities or wedge cracks) along its path inside the material, which results in the total damage accumulation rate as given by da/dN=(1+(lc+lz)/λ){(da/dN)f+(da/dN)env}, where (da/dN)f is the pure fatigue crack growth rate, (da/dN)env is the environment-assisted crack growth rate, lc/lz is the cavity/wedge crack size, and λ is the average spacing between the internal cavities or cracks. Since wedge cracks are usually present in the form of dislocation pile-ups at low temperatures and cavitation usually occurs at high temperatures, the model attempts to reconcile the creep-/dwell-fatigue phenomena over a broad temperature range of engineering concern. In particular, the model has been used to explain the dwell fatigue of titanium alloys and high temperature creep-fatigue interactions in Ni-base superalloys under tensile cyclic creep rupture, compressive cyclic creep rupture, and tension/compression-hold strain controlled cyclic test conditions.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Model of Nonlinear Fatigue-Creep (Dwell) Interactions
    typeJournal Paper
    journal volume131
    journal issue3
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.2982152
    journal fristpage32101
    identifier eissn0742-4795
    treeJournal of Engineering for Gas Turbines and Power:;2009:;volume( 131 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian