YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mechanical Investigation of a Failed Lock-Pin

    Source: Journal of Engineering for Gas Turbines and Power:;2009:;volume( 131 ):;issue: 004::page 42501
    Author:
    E. Poursaeidi
    ,
    A. A. Pirmohammadi
    ,
    M. R. Mohammadi Arhani
    DOI: 10.1115/1.3077660
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents the outcomes of computational mechanics applied in the root-cause investigation on hot section failure of a 25 MW gas turbo generator in the domestic power plant after 2228 start-stops and 52,586 h operation. The failure includes the complete damage of the first and the second stage of nozzles, blades, seals, shroud segments, and also a peripheral damage on the disk of first stage. Several reported cases from the different power plants with similar events evidenced that the failure is a serious common type in the mentioned gas turbine engine. A previous study on complete metallurgical analysis of disk, moving blades, and lock-pins, was done by and (2008, “Failure Analysis of Lock-Pin in a Gas Turbine Engine,” Eng. Fail. Anal., 15(7), pp. 847–855), which concluded that the mechanical specification of applied materials had been satisfied. Nevertheless, some problems were found in the fractographic results of lock-pins: the typical fatigue fracture surfaces in the neck of failed lock-pins and frankly localized pitting signs near the head of lock-pin. The lock-pins are kinds of small devices that lock the buckets after inserting them into disk grooves. In this work, a 3D finite element model (FEM) of a blade, a disk, and a lock-pin are made and analyzed by the ANSYS software. The results of the FEM showed a reasonable agreement between the analysis and position of fracture on lock-pins. Also, the results showed that the second vibrational mode of the bucket is a possible cause of failure because in this mode the peak stress occurs on the head of the lock-pin. However, inadequate design and long time service reduced the performance of lock-pins for sustaining a severe hot condition in the first stage of the turbine section.
    keyword(s): Locks (Waterways) , Stress , Pins (Engineering) , Gas turbines , Turbines , Disks , Blades , Failure AND Fatigue ,
    • Download: (1.414Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mechanical Investigation of a Failed Lock-Pin

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/140439
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorE. Poursaeidi
    contributor authorA. A. Pirmohammadi
    contributor authorM. R. Mohammadi Arhani
    date accessioned2017-05-09T00:32:38Z
    date available2017-05-09T00:32:38Z
    date copyrightJuly, 2009
    date issued2009
    identifier issn1528-8919
    identifier otherJETPEZ-27075#042501_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/140439
    description abstractThis paper presents the outcomes of computational mechanics applied in the root-cause investigation on hot section failure of a 25 MW gas turbo generator in the domestic power plant after 2228 start-stops and 52,586 h operation. The failure includes the complete damage of the first and the second stage of nozzles, blades, seals, shroud segments, and also a peripheral damage on the disk of first stage. Several reported cases from the different power plants with similar events evidenced that the failure is a serious common type in the mentioned gas turbine engine. A previous study on complete metallurgical analysis of disk, moving blades, and lock-pins, was done by and (2008, “Failure Analysis of Lock-Pin in a Gas Turbine Engine,” Eng. Fail. Anal., 15(7), pp. 847–855), which concluded that the mechanical specification of applied materials had been satisfied. Nevertheless, some problems were found in the fractographic results of lock-pins: the typical fatigue fracture surfaces in the neck of failed lock-pins and frankly localized pitting signs near the head of lock-pin. The lock-pins are kinds of small devices that lock the buckets after inserting them into disk grooves. In this work, a 3D finite element model (FEM) of a blade, a disk, and a lock-pin are made and analyzed by the ANSYS software. The results of the FEM showed a reasonable agreement between the analysis and position of fracture on lock-pins. Also, the results showed that the second vibrational mode of the bucket is a possible cause of failure because in this mode the peak stress occurs on the head of the lock-pin. However, inadequate design and long time service reduced the performance of lock-pins for sustaining a severe hot condition in the first stage of the turbine section.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMechanical Investigation of a Failed Lock-Pin
    typeJournal Paper
    journal volume131
    journal issue4
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.3077660
    journal fristpage42501
    identifier eissn0742-4795
    keywordsLocks (Waterways)
    keywordsStress
    keywordsPins (Engineering)
    keywordsGas turbines
    keywordsTurbines
    keywordsDisks
    keywordsBlades
    keywordsFailure AND Fatigue
    treeJournal of Engineering for Gas Turbines and Power:;2009:;volume( 131 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian