| contributor author | Jaeseon Lee | |
| contributor author | Issam Mudawar | |
| date accessioned | 2017-05-09T00:32:17Z | |
| date available | 2017-05-09T00:32:17Z | |
| date copyright | September, 2009 | |
| date issued | 2009 | |
| identifier issn | 1528-9044 | |
| identifier other | JEPAE4-26298#031008_1.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/140287 | |
| description abstract | This study examines the pressure drop characteristics of subcooled two-phase microchannel heat sinks. A new model is proposed, which depicts the subcooled flow as consisting of a homogeneous two-phase flow layer near the heated walls of the microchannel and a second subcooled bulk liquid layer. This model is intended for conditions where subcooled flow boiling persists along the entire microchannel and the outlet fluid never reaches bulk saturation temperature. Mass, momentum, and energy control volume conservation equations are combined to predict flow characteristics for thermodynamic equilibrium qualities below zero. By incorporating a relation for apparent quality across the two-phase layer and a new criterion for bubble departure, this model enables the determination of axial variations in two-phase layer thickness and velocity as well as pressure drop. The model predictions are compared with HFE 7100 pressure drop data for four different microchannel sizes with hydraulic diameters of 176–416 μm, mass velocities of 670–5550 kg/m2 s, and inlet temperatures of 0°C and −30°C. The pressure drop database is predicted with a mean absolute error of 14.9%. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Experimental Investigation and Theoretical Model for Subcooled Flow Boiling Pressure Drop in Microchannel Heat Sinks | |
| type | Journal Paper | |
| journal volume | 131 | |
| journal issue | 3 | |
| journal title | Journal of Electronic Packaging | |
| identifier doi | 10.1115/1.3144146 | |
| journal fristpage | 31008 | |
| identifier eissn | 1043-7398 | |
| keywords | Flow (Dynamics) | |
| keywords | Boiling | |
| keywords | Pressure drop | |
| keywords | Subcooling | |
| keywords | Microchannels | |
| keywords | Heat sinks | |
| keywords | Equations AND Temperature | |
| tree | Journal of Electronic Packaging:;2009:;volume( 131 ):;issue: 003 | |
| contenttype | Fulltext | |