YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Thermal and Structural Analysis of a Suspended Physics Package for a Chip-Scale Atomic Clock

    Source: Journal of Electronic Packaging:;2009:;volume( 131 ):;issue: 004::page 41005
    Author:
    A. D. Laws
    ,
    R. Borwick
    ,
    Y. C. Lee
    ,
    P. Stupar
    ,
    J. DeNatale
    DOI: 10.1115/1.4000211
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The power dissipation for chip-scale atomic clocks (CSAC) is one of the major design considerations. 12 mW of the 30 mW power budget is for temperature control of the vertical-cavity-surface-emitting laser (VCSEL) and the alkali-metal vapor cell. Each of these must be maintained at 70+/−0.1°C even over large ambient temperature variations of 0–50°C. Thus the physics package of a CSAC device, which contains the vapor cell, VCSEL, and optical components, must have a very high thermal resistance, greater than 5.83°C/m W, to operate in 0°C ambient temperatures while dissipating less than 12 mW of power for heating. To create such a high level of insulation, the physics package is enclosed in a gold coated vacuum package and is suspended on a specially designed structure made from Cirlex, a type of polyimide. The thermal performance of the suspended physics package has been evaluated by measuring the total thermal resistance from a mockup package with and without an enclosure. Without an enclosure, the thermal resistance was found to be 1.07°C/m W. With the enclosure, the resistance increases to 1.71°C/m W. These two cases were modeled using finite element analysis (FEA), the results of which were found to match well with experimental measurements. A FEA model of the real design of the enclosed and suspended physics package was then modeled and was found to have a thermal resistance of 6.28°C/m W, which meets the project requirements of greater than 5.83°C/m W. The structural performance of the physics package was measured by shock-testing, a physics package mockup and recording the response with a high-speed video camera. The shock tests were modeled using dynamic FEA and were found to match well with the displacement measurements. A FEA model of the final design, not the mockup, of the physics package was created and was used to predict that the physics package will survive a 1800 g shock of any duration in any direction without exceeding the Cirlex yield stress of 49 MPa. In addition, the package will survive a 10,000 g shock of any duration in any direction without exceeding the Cirlex tensile stress of 229 MPa.
    keyword(s): Physics , Design , Temperature , Atomic clocks , Shock (Mechanics) AND Structural analysis ,
    • Download: (1.164Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Thermal and Structural Analysis of a Suspended Physics Package for a Chip-Scale Atomic Clock

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/140269
    Collections
    • Journal of Electronic Packaging

    Show full item record

    contributor authorA. D. Laws
    contributor authorR. Borwick
    contributor authorY. C. Lee
    contributor authorP. Stupar
    contributor authorJ. DeNatale
    date accessioned2017-05-09T00:32:16Z
    date available2017-05-09T00:32:16Z
    date copyrightDecember, 2009
    date issued2009
    identifier issn1528-9044
    identifier otherJEPAE4-26300#041005_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/140269
    description abstractThe power dissipation for chip-scale atomic clocks (CSAC) is one of the major design considerations. 12 mW of the 30 mW power budget is for temperature control of the vertical-cavity-surface-emitting laser (VCSEL) and the alkali-metal vapor cell. Each of these must be maintained at 70+/−0.1°C even over large ambient temperature variations of 0–50°C. Thus the physics package of a CSAC device, which contains the vapor cell, VCSEL, and optical components, must have a very high thermal resistance, greater than 5.83°C/m W, to operate in 0°C ambient temperatures while dissipating less than 12 mW of power for heating. To create such a high level of insulation, the physics package is enclosed in a gold coated vacuum package and is suspended on a specially designed structure made from Cirlex, a type of polyimide. The thermal performance of the suspended physics package has been evaluated by measuring the total thermal resistance from a mockup package with and without an enclosure. Without an enclosure, the thermal resistance was found to be 1.07°C/m W. With the enclosure, the resistance increases to 1.71°C/m W. These two cases were modeled using finite element analysis (FEA), the results of which were found to match well with experimental measurements. A FEA model of the real design of the enclosed and suspended physics package was then modeled and was found to have a thermal resistance of 6.28°C/m W, which meets the project requirements of greater than 5.83°C/m W. The structural performance of the physics package was measured by shock-testing, a physics package mockup and recording the response with a high-speed video camera. The shock tests were modeled using dynamic FEA and were found to match well with the displacement measurements. A FEA model of the final design, not the mockup, of the physics package was created and was used to predict that the physics package will survive a 1800 g shock of any duration in any direction without exceeding the Cirlex yield stress of 49 MPa. In addition, the package will survive a 10,000 g shock of any duration in any direction without exceeding the Cirlex tensile stress of 229 MPa.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThermal and Structural Analysis of a Suspended Physics Package for a Chip-Scale Atomic Clock
    typeJournal Paper
    journal volume131
    journal issue4
    journal titleJournal of Electronic Packaging
    identifier doi10.1115/1.4000211
    journal fristpage41005
    identifier eissn1043-7398
    keywordsPhysics
    keywordsDesign
    keywordsTemperature
    keywordsAtomic clocks
    keywordsShock (Mechanics) AND Structural analysis
    treeJournal of Electronic Packaging:;2009:;volume( 131 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian