contributor author | S. Nima Mahmoodi | |
contributor author | Mehdi Ahmadian | |
date accessioned | 2017-05-09T00:32:09Z | |
date available | 2017-05-09T00:32:09Z | |
date copyright | July, 2009 | |
date issued | 2009 | |
identifier issn | 0022-0434 | |
identifier other | JDSMAA-26497#041002_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/140191 | |
description abstract | A novel active vibration control technique based on positive position feedback method is developed. This method, which is a modified version of positive position feedback, employs a first-order compensator that provides damping control and a second-order compensator for vibration suppression. In contrast, conventional positive position feedback uses a single second-order compensator. The technique is useful for strain-based sensors and can be applied to piezoelectrically controlled systems. After introducing the concept of modified positive position feedback, this paper investigates the stability of the new method for locating gain limits. Stability conditions are global and independent of the dynamical characteristics of the open-loop system. Using root locus plots, proper compensator frequency is identified and damping of the closed-loop system is studied. The performance of the modified positive position feedback for both steady-state and transient dynamic control is studied. The experimental and numerical results show that the proposed method is significantly more effective in controlling steady-state response and slightly advantageous for transient dynamics control, as compared with conventional positive position feedback. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Active Vibration Control With Modified Positive Position Feedback | |
type | Journal Paper | |
journal volume | 131 | |
journal issue | 4 | |
journal title | Journal of Dynamic Systems, Measurement, and Control | |
identifier doi | 10.1115/1.3089565 | |
journal fristpage | 41002 | |
identifier eissn | 1528-9028 | |
tree | Journal of Dynamic Systems, Measurement, and Control:;2009:;volume( 131 ):;issue: 004 | |
contenttype | Fulltext | |