YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Desired Compensation Adaptive Robust Control

    Source: Journal of Dynamic Systems, Measurement, and Control:;2009:;volume( 131 ):;issue: 006::page 61001
    Author:
    Bin Yao
    DOI: 10.1115/1.3211087
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A desired compensation adaptive robust control (DCARC) framework is presented for nonlinear systems having both parametric uncertainties and uncertain nonlinearities. The paper first considers a class of higher order nonlinear systems transformable to a normal form with matched model uncertainties. For this class of uncertain systems, the desired values of all states for tracking a known desired trajectory can be predetermined and the usual desired compensation concept can be used to synthesize DCARC laws. The paper then focuses on systems with unmatched model uncertainties, in which the desired values of the intermediate state variables for perfect output tracking of a known desired trajectory cannot be predetermined. A novel way of formulating desired compensation concept is proposed and a DCARC backstepping design is developed to overcome the design difficulties associated with unmatched model uncertainties. The proposed DCARC framework has the unique feature that the adaptive model compensation and the regressor depend on the reference output trajectory and on-line parameter estimates only. Such a structure has several implementation advantages. First, the adaptive model compensation is always bounded when projection type adaption law is used, and thus does not affect the closed-loop system stability. As a result, the interaction between the parameter adaptation and the robust control law is reduced, which may facilitate the controller gain tuning process considerably. Second, the effect of measurement noise on the adaptive model compensation and on the parameter adaptation law is minimized. Consequently, a faster adaptation rate can be chosen in implementation to speed up the transient response and to improve overall tracking performance. These claims have been verified in the comparative experimental studies of several applications.
    • Download: (131.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Desired Compensation Adaptive Robust Control

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/140164
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorBin Yao
    date accessioned2017-05-09T00:32:06Z
    date available2017-05-09T00:32:06Z
    date copyrightNovember, 2009
    date issued2009
    identifier issn0022-0434
    identifier otherJDSMAA-26505#061001_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/140164
    description abstractA desired compensation adaptive robust control (DCARC) framework is presented for nonlinear systems having both parametric uncertainties and uncertain nonlinearities. The paper first considers a class of higher order nonlinear systems transformable to a normal form with matched model uncertainties. For this class of uncertain systems, the desired values of all states for tracking a known desired trajectory can be predetermined and the usual desired compensation concept can be used to synthesize DCARC laws. The paper then focuses on systems with unmatched model uncertainties, in which the desired values of the intermediate state variables for perfect output tracking of a known desired trajectory cannot be predetermined. A novel way of formulating desired compensation concept is proposed and a DCARC backstepping design is developed to overcome the design difficulties associated with unmatched model uncertainties. The proposed DCARC framework has the unique feature that the adaptive model compensation and the regressor depend on the reference output trajectory and on-line parameter estimates only. Such a structure has several implementation advantages. First, the adaptive model compensation is always bounded when projection type adaption law is used, and thus does not affect the closed-loop system stability. As a result, the interaction between the parameter adaptation and the robust control law is reduced, which may facilitate the controller gain tuning process considerably. Second, the effect of measurement noise on the adaptive model compensation and on the parameter adaptation law is minimized. Consequently, a faster adaptation rate can be chosen in implementation to speed up the transient response and to improve overall tracking performance. These claims have been verified in the comparative experimental studies of several applications.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDesired Compensation Adaptive Robust Control
    typeJournal Paper
    journal volume131
    journal issue6
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.3211087
    journal fristpage61001
    identifier eissn1528-9028
    treeJournal of Dynamic Systems, Measurement, and Control:;2009:;volume( 131 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian