YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Damage Initiation and Propagation in Voided Joints: Modeling and Experiment

    Source: Journal of Electronic Packaging:;2008:;volume( 130 ):;issue: 001::page 11008
    Author:
    Leila Jannesari Ladani
    ,
    Abhijit Dasgupta
    DOI: 10.1115/1.2837562
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This study examines damage initiation and propagation in solder joints with voids, under thermomechanical cyclic loading. An accelerated thermal cycling test is conducted on printed wiring assemblies (PWAs) containing 256 input/output (I/O) plastic ball grid arrays (PBGAs) with voided solder joints. Destructive and nondestructive failure analyses of the solder balls are used to detect the presence of voids and to relate the extent of damage propagation to the number of thermal cycles. Particular cases of voided and damaged joints are selected from these tests, to guide the development of a strategy for modeling damage propagation, using a three dimensional global-local finite element analysis (FEA). The displacement results of the global FEA at the top and bottom of the selected solder balls are used as the boundary conditions in a local FEA model, which focuses on the details of damage initiation and propagation in the individual solder ball. The local model is error seeded with voids based on cases selected in experiment. The damage propagation rate is monitored for all the cases. The technique used to quantify cyclic creep-fatigue damage is a continuum model based on energy partitioning. A method of successive initiation is used to model the growth and propagation of damage in the selected case studies. The modeling approach is qualitatively verified using the results of the accelerated thermal cycling test. The verified modeling technique described above is then used for parametric study of the durability of voided solder balls in a ChipArray Thin Core BGA with 132 I/O (CTBGA132) assemblies, under thermal cycling. The critical solder ball in the package is selected and is error seeded with voids with different sizes and various distances from damage initiation site. The results show that voids in general are not detrimental to thermal cycling durability of the CTBGA132 assembly, except when a large portion of the damage propagation path is covered with voids. Small voids can arrest the damage propagation, but generally do not provide a significant increase in durability because the damage zone deflects around the void and also continues to propagate from other critical regions in the solder ball.
    keyword(s): Solders , Finite element analysis , Modeling , Solder joints , Fracture (Materials) , Durability , Cycles , Creep AND Ball-Grid-Array packaging ,
    • Download: (1.366Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Damage Initiation and Propagation in Voided Joints: Modeling and Experiment

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/137786
    Collections
    • Journal of Electronic Packaging

    Show full item record

    contributor authorLeila Jannesari Ladani
    contributor authorAbhijit Dasgupta
    date accessioned2017-05-09T00:27:38Z
    date available2017-05-09T00:27:38Z
    date copyrightMarch, 2008
    date issued2008
    identifier issn1528-9044
    identifier otherJEPAE4-26283#011008_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/137786
    description abstractThis study examines damage initiation and propagation in solder joints with voids, under thermomechanical cyclic loading. An accelerated thermal cycling test is conducted on printed wiring assemblies (PWAs) containing 256 input/output (I/O) plastic ball grid arrays (PBGAs) with voided solder joints. Destructive and nondestructive failure analyses of the solder balls are used to detect the presence of voids and to relate the extent of damage propagation to the number of thermal cycles. Particular cases of voided and damaged joints are selected from these tests, to guide the development of a strategy for modeling damage propagation, using a three dimensional global-local finite element analysis (FEA). The displacement results of the global FEA at the top and bottom of the selected solder balls are used as the boundary conditions in a local FEA model, which focuses on the details of damage initiation and propagation in the individual solder ball. The local model is error seeded with voids based on cases selected in experiment. The damage propagation rate is monitored for all the cases. The technique used to quantify cyclic creep-fatigue damage is a continuum model based on energy partitioning. A method of successive initiation is used to model the growth and propagation of damage in the selected case studies. The modeling approach is qualitatively verified using the results of the accelerated thermal cycling test. The verified modeling technique described above is then used for parametric study of the durability of voided solder balls in a ChipArray Thin Core BGA with 132 I/O (CTBGA132) assemblies, under thermal cycling. The critical solder ball in the package is selected and is error seeded with voids with different sizes and various distances from damage initiation site. The results show that voids in general are not detrimental to thermal cycling durability of the CTBGA132 assembly, except when a large portion of the damage propagation path is covered with voids. Small voids can arrest the damage propagation, but generally do not provide a significant increase in durability because the damage zone deflects around the void and also continues to propagate from other critical regions in the solder ball.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDamage Initiation and Propagation in Voided Joints: Modeling and Experiment
    typeJournal Paper
    journal volume130
    journal issue1
    journal titleJournal of Electronic Packaging
    identifier doi10.1115/1.2837562
    journal fristpage11008
    identifier eissn1043-7398
    keywordsSolders
    keywordsFinite element analysis
    keywordsModeling
    keywordsSolder joints
    keywordsFracture (Materials)
    keywordsDurability
    keywordsCycles
    keywordsCreep AND Ball-Grid-Array packaging
    treeJournal of Electronic Packaging:;2008:;volume( 130 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian