contributor author | S. B. Park | |
contributor author | Rahul Joshi | |
contributor author | Izhar Ahmed | |
contributor author | Soonwan Chung | |
date accessioned | 2017-05-09T00:27:31Z | |
date available | 2017-05-09T00:27:31Z | |
date copyright | December, 2008 | |
date issued | 2008 | |
identifier issn | 1528-9044 | |
identifier other | JEPAE4-26289#041004_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/137736 | |
description abstract | Experimental and numerical techniques are employed to assess the thermomechanical behavior of ceramic and organic flip chip packages under power cycling (PC) and accelerated thermal cycling (ATC). In PC, nonuniform temperature distribution and different coefficients of thermal expansion of each component make the package deform differently compared to the case of ATC. Traditionally, reliability assessment is conducted by ATC because ATC is believed to have a more severe thermal loading condition compared to PC, which is similar to the actual field condition. In this work, the comparative study of PC and ATC was conducted for the reliability of board level interconnects. The comparison was made using both ceramic and organic flip chip ball grid array packages. Moiré interferometry was adopted for the experimental stress analysis. In PC simulation, computational fluid dynamics analysis and finite element analysis are performed. The assembly deformations in numerical simulation are compared with those obtained by Moiré images. It is confirmed that for a certain organic package PC can be a more severe condition that causes solder interconnects to fail earlier than in ATC while the ceramic package fails earlier in ATC always. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Comparative Studies on Solder Joint Reliability of Plastic and Ceramic Ball Grid Array Packages of the Same Form Factor Under Power and Accelerated Thermal Cycling | |
type | Journal Paper | |
journal volume | 130 | |
journal issue | 4 | |
journal title | Journal of Electronic Packaging | |
identifier doi | 10.1115/1.2993146 | |
journal fristpage | 41004 | |
identifier eissn | 1043-7398 | |
keywords | Deformation | |
keywords | Temperature | |
keywords | Ceramics | |
keywords | Solders | |
keywords | Computer simulation | |
keywords | Manufacturing | |
keywords | Reliability | |
keywords | Finite element analysis | |
keywords | Solder joints | |
keywords | Ball-Grid-Array packaging | |
keywords | Computational fluid dynamics | |
keywords | Temperature distribution AND Cycles | |
tree | Journal of Electronic Packaging:;2008:;volume( 130 ):;issue: 004 | |
contenttype | Fulltext | |