YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Characterization of the Dynamical Response of a Micromachined G-Sensor to Mechanical Shock Loading

    Source: Journal of Dynamic Systems, Measurement, and Control:;2008:;volume( 130 ):;issue: 004::page 41003
    Author:
    Daniel Jordy
    ,
    Mohammad I. Younis
    DOI: 10.1115/1.2936849
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Squeeze film damping has a significant effect on the dynamic response of microelectromechanical system (MEMS) devices that employ perforated microstructures with large planar areas and small gap widths separating them from the substrate. Perforations can alter the effect of squeeze film damping by allowing the gas underneath the device to easily escape, thereby lowering damping. By decreasing the size of the holes, damping increases and the squeeze film damping effect increases. This can be used to minimize the out-of-plane motion of the microstructures toward the substrate, thereby minimizing the possibility of contact and stiction. This paper aims to explore the use of the squeeze film damping phenomenon as a way to mitigate shock and minimize the possibility of stiction and failure in this class of MEMS devices. As a case study, the performance of a G-sensor (threshold accelerometer) employed in an arming and fusing chip is investigated. The effect of changing the size of the perforation holes and the gap width separating the microstructure from the substrate are studied. A multiphysics finite-element model built using the software ANSYS is utilized for the fluidic and transient structural analysis. A squeeze film damping model, for both the air underneath the structure and the flow of the air through the perforations, is developed. Results are shown for various models of squeeze film damping assuming no holes, large holes, and assuming a finite pressure drop across the holes, which is the most accurate way of modeling. It is found that the threshold of shock that causes the G-sensor to contact the substrate has increased significantly when decreasing the holes size or the gap width, which is very promising to help mitigate stiction in this class of devices, thereby improving their reliability.
    keyword(s): Sensors , Shock (Mechanics) , Damping , Microelectromechanical systems , Stiction AND Motion ,
    • Download: (1.004Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Characterization of the Dynamical Response of a Micromachined G-Sensor to Mechanical Shock Loading

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/137666
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorDaniel Jordy
    contributor authorMohammad I. Younis
    date accessioned2017-05-09T00:27:25Z
    date available2017-05-09T00:27:25Z
    date copyrightJuly, 2008
    date issued2008
    identifier issn0022-0434
    identifier otherJDSMAA-26454#041003_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/137666
    description abstractSqueeze film damping has a significant effect on the dynamic response of microelectromechanical system (MEMS) devices that employ perforated microstructures with large planar areas and small gap widths separating them from the substrate. Perforations can alter the effect of squeeze film damping by allowing the gas underneath the device to easily escape, thereby lowering damping. By decreasing the size of the holes, damping increases and the squeeze film damping effect increases. This can be used to minimize the out-of-plane motion of the microstructures toward the substrate, thereby minimizing the possibility of contact and stiction. This paper aims to explore the use of the squeeze film damping phenomenon as a way to mitigate shock and minimize the possibility of stiction and failure in this class of MEMS devices. As a case study, the performance of a G-sensor (threshold accelerometer) employed in an arming and fusing chip is investigated. The effect of changing the size of the perforation holes and the gap width separating the microstructure from the substrate are studied. A multiphysics finite-element model built using the software ANSYS is utilized for the fluidic and transient structural analysis. A squeeze film damping model, for both the air underneath the structure and the flow of the air through the perforations, is developed. Results are shown for various models of squeeze film damping assuming no holes, large holes, and assuming a finite pressure drop across the holes, which is the most accurate way of modeling. It is found that the threshold of shock that causes the G-sensor to contact the substrate has increased significantly when decreasing the holes size or the gap width, which is very promising to help mitigate stiction in this class of devices, thereby improving their reliability.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleCharacterization of the Dynamical Response of a Micromachined G-Sensor to Mechanical Shock Loading
    typeJournal Paper
    journal volume130
    journal issue4
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.2936849
    journal fristpage41003
    identifier eissn1528-9028
    keywordsSensors
    keywordsShock (Mechanics)
    keywordsDamping
    keywordsMicroelectromechanical systems
    keywordsStiction AND Motion
    treeJournal of Dynamic Systems, Measurement, and Control:;2008:;volume( 130 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian