YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental and Numerical Investigation of the Reliability of Double-Sided Area Array Assemblies

    Source: Journal of Electronic Packaging:;2006:;volume( 128 ):;issue: 004::page 441
    Author:
    S. Chaparala
    ,
    M. Meilunas
    ,
    J. M. Pitarresi
    ,
    S. Parupalli
    ,
    S. Mandepudi
    DOI: 10.1115/1.2353280
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: One of the primary advantages of surface mount technology (SMT) over through-hole technology is that SMT allows the assembly of components on both sides of the printed circuit board (PCB). Currently, area array components such as ball grid array (BGA) and chip-scale package (CSP) assemblies are being used in double-sided configurations for network and memory device applications as they reduce the routing space and improve electrical performance (, and , 2002, “A Low Cost Reliability Assessment for Double-Sided Mirror-Imaged Flip Chip BGA Assemblies,” Proceedings of the Seventh Annual Pan Pacific Microelectronics Symposium, Maui, Hawaii, pp. 7–15, and , and , 2001, “Reliability Design and Experimental work for Mirror Image CSP Assembly”, Proceedings of the International Symposium on Microelectronics, Baltimore, October, pp. 417–422). These assemblies typically use a “mirror image” configuration wherein the components are placed on either side of the PCB directly over each other; however, other configurations are possible. Double-sided assemblies pose challenges for thermal dissipation, inspection, rework, and thermal cycling reliability. The scope of this paper is the study of the reliability of double-sided assemblies both experimentally and through numerical simulation. The assemblies studied include single-sided, mirror-imaged, 50% offset CSP assemblies, CSPs with capacitors on the backside, single-sided, mirror-imaged plastic ball grid arrays (PBGAs), quad flat pack (QFP)/BGA mixed assemblies. The effect of assembly stiffness on thermal cycling reliability was investigated. To assess the assembly flexural stiffness and its effect on the thermal cycling reliability, a three-point bending measurement was performed. Accelerated thermal cycling cycles to failure were documented for all assemblies and the data were used to calculate the characteristic life. In general, a 2X to 3X decrease in reliability was observed for mirror-image assemblies when compared to single-sided assemblies for both BGAs and CSPs on 62mil test boards. The reliability of mirror-image assemblies when one component was an area array device and the other was a QFP was comparable to the reliability of the single-sided area array assemblies alone, that is, the QFP had almost no influence on the double-sided reliability when used with an area array component. Moiré interferometry was used to study the displacement distribution in the solder joints at specific locations in the packages. Data from the reliability and moiré measurements were correlated with predictions generated from three-dimensional finite element models of the assemblies. The models incorporated nonlinear and time-temperature dependent solder material properties and they were used to estimate the fatigue life of the solder joints and to obtain an estimate of the overall package reliability using Darveaux’s crack propagation method.
    keyword(s): Measurement , Manufacturing , Reliability , Cycles , Mirrors , Stiffness , Ball-Grid-Array packaging , Solder joints , Solders , Finite element model AND Finite element analysis ,
    • Download: (946.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental and Numerical Investigation of the Reliability of Double-Sided Area Array Assemblies

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/133510
    Collections
    • Journal of Electronic Packaging

    Show full item record

    contributor authorS. Chaparala
    contributor authorM. Meilunas
    contributor authorJ. M. Pitarresi
    contributor authorS. Parupalli
    contributor authorS. Mandepudi
    date accessioned2017-05-09T00:19:33Z
    date available2017-05-09T00:19:33Z
    date copyrightDecember, 2006
    date issued2006
    identifier issn1528-9044
    identifier otherJEPAE4-26266#441_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/133510
    description abstractOne of the primary advantages of surface mount technology (SMT) over through-hole technology is that SMT allows the assembly of components on both sides of the printed circuit board (PCB). Currently, area array components such as ball grid array (BGA) and chip-scale package (CSP) assemblies are being used in double-sided configurations for network and memory device applications as they reduce the routing space and improve electrical performance (, and , 2002, “A Low Cost Reliability Assessment for Double-Sided Mirror-Imaged Flip Chip BGA Assemblies,” Proceedings of the Seventh Annual Pan Pacific Microelectronics Symposium, Maui, Hawaii, pp. 7–15, and , and , 2001, “Reliability Design and Experimental work for Mirror Image CSP Assembly”, Proceedings of the International Symposium on Microelectronics, Baltimore, October, pp. 417–422). These assemblies typically use a “mirror image” configuration wherein the components are placed on either side of the PCB directly over each other; however, other configurations are possible. Double-sided assemblies pose challenges for thermal dissipation, inspection, rework, and thermal cycling reliability. The scope of this paper is the study of the reliability of double-sided assemblies both experimentally and through numerical simulation. The assemblies studied include single-sided, mirror-imaged, 50% offset CSP assemblies, CSPs with capacitors on the backside, single-sided, mirror-imaged plastic ball grid arrays (PBGAs), quad flat pack (QFP)/BGA mixed assemblies. The effect of assembly stiffness on thermal cycling reliability was investigated. To assess the assembly flexural stiffness and its effect on the thermal cycling reliability, a three-point bending measurement was performed. Accelerated thermal cycling cycles to failure were documented for all assemblies and the data were used to calculate the characteristic life. In general, a 2X to 3X decrease in reliability was observed for mirror-image assemblies when compared to single-sided assemblies for both BGAs and CSPs on 62mil test boards. The reliability of mirror-image assemblies when one component was an area array device and the other was a QFP was comparable to the reliability of the single-sided area array assemblies alone, that is, the QFP had almost no influence on the double-sided reliability when used with an area array component. Moiré interferometry was used to study the displacement distribution in the solder joints at specific locations in the packages. Data from the reliability and moiré measurements were correlated with predictions generated from three-dimensional finite element models of the assemblies. The models incorporated nonlinear and time-temperature dependent solder material properties and they were used to estimate the fatigue life of the solder joints and to obtain an estimate of the overall package reliability using Darveaux’s crack propagation method.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental and Numerical Investigation of the Reliability of Double-Sided Area Array Assemblies
    typeJournal Paper
    journal volume128
    journal issue4
    journal titleJournal of Electronic Packaging
    identifier doi10.1115/1.2353280
    journal fristpage441
    journal lastpage448
    identifier eissn1043-7398
    keywordsMeasurement
    keywordsManufacturing
    keywordsReliability
    keywordsCycles
    keywordsMirrors
    keywordsStiffness
    keywordsBall-Grid-Array packaging
    keywordsSolder joints
    keywordsSolders
    keywordsFinite element model AND Finite element analysis
    treeJournal of Electronic Packaging:;2006:;volume( 128 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian