YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Investigation of Heat Transfer in Impingement Air Cooled Plate Fin Heat Sinks

    Source: Journal of Electronic Packaging:;2006:;volume( 128 ):;issue: 004::page 412
    Author:
    Zhipeng Duan
    ,
    Y. S. Muzychka
    DOI: 10.1115/1.2351906
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Impingement cooling of plate fin heat sinks is examined. Experimental measurements of thermal performance were performed with four heat sinks of various impingement inlet widths, fin spacings, fin heights, and airflow velocities. The percent uncertainty in the measured thermal resistance was a maximum of 2.6% in the validation tests. Using a simple thermal resistance model based on developing laminar flow in rectangular channels, the actual mean heat transfer coefficients are obtained in order to develop a simple heat transfer model for the impingement plate fin heat sink system. The experimental results are combined into a dimensionless correlation for channel average Nusselt number Nu∼f(L*,Pr). We use a dimensionless thermal developing flow length, L*=(L∕2)∕(DhRePr), as the independent parameter. Results show that Nu∼1∕L*, similar to developing flow in parallel channels. The heat transfer model covers the practical operating range of most heat sinks, 0.01<L*<0.18. The accuracy of the heat transfer model was found to be within 11% of the experimental data taken on four heat sinks and other experimental data from the published literature at channel Reynolds numbers less than 1200. The proposed heat transfer model may be used to predict the thermal performance of impingement air cooled plate fin heat sinks for design purposes.
    keyword(s): Flow (Dynamics) , Heat transfer , Channels (Hydraulic engineering) , Heat sinks , Thermal resistance AND Heat transfer coefficients ,
    • Download: (223.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Investigation of Heat Transfer in Impingement Air Cooled Plate Fin Heat Sinks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/133506
    Collections
    • Journal of Electronic Packaging

    Show full item record

    contributor authorZhipeng Duan
    contributor authorY. S. Muzychka
    date accessioned2017-05-09T00:19:32Z
    date available2017-05-09T00:19:32Z
    date copyrightDecember, 2006
    date issued2006
    identifier issn1528-9044
    identifier otherJEPAE4-26266#412_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/133506
    description abstractImpingement cooling of plate fin heat sinks is examined. Experimental measurements of thermal performance were performed with four heat sinks of various impingement inlet widths, fin spacings, fin heights, and airflow velocities. The percent uncertainty in the measured thermal resistance was a maximum of 2.6% in the validation tests. Using a simple thermal resistance model based on developing laminar flow in rectangular channels, the actual mean heat transfer coefficients are obtained in order to develop a simple heat transfer model for the impingement plate fin heat sink system. The experimental results are combined into a dimensionless correlation for channel average Nusselt number Nu∼f(L*,Pr). We use a dimensionless thermal developing flow length, L*=(L∕2)∕(DhRePr), as the independent parameter. Results show that Nu∼1∕L*, similar to developing flow in parallel channels. The heat transfer model covers the practical operating range of most heat sinks, 0.01<L*<0.18. The accuracy of the heat transfer model was found to be within 11% of the experimental data taken on four heat sinks and other experimental data from the published literature at channel Reynolds numbers less than 1200. The proposed heat transfer model may be used to predict the thermal performance of impingement air cooled plate fin heat sinks for design purposes.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Investigation of Heat Transfer in Impingement Air Cooled Plate Fin Heat Sinks
    typeJournal Paper
    journal volume128
    journal issue4
    journal titleJournal of Electronic Packaging
    identifier doi10.1115/1.2351906
    journal fristpage412
    journal lastpage418
    identifier eissn1043-7398
    keywordsFlow (Dynamics)
    keywordsHeat transfer
    keywordsChannels (Hydraulic engineering)
    keywordsHeat sinks
    keywordsThermal resistance AND Heat transfer coefficients
    treeJournal of Electronic Packaging:;2006:;volume( 128 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian