YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Exergy-Based Figure-of-Merit for Electronic Packages

    Source: Journal of Electronic Packaging:;2006:;volume( 128 ):;issue: 004::page 360
    Author:
    Amip J. Shah
    ,
    Cullen E. Bash
    ,
    Chandrakant D. Patel
    ,
    Van P. Carey
    DOI: 10.1115/1.2351901
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Chip power consumption and heat dissipation have become important design issues because of increased energy costs and thermal management limitations. As a global compute utility evolves, seamless connectivity from the chip to the data center will become increasingly important. The optimization of such an infrastructure will require performance metrics that can adequately capture the thermodynamic and compute behavior at multiple physical length scales. In this paper, an exergy-based figure-of-merit (FoM), defined as the ratio of computing performance (in MIPS) to the thermodynamic performance (in exergy loss), is proposed for the evaluation of computational performance. The paper presents the framework to apply this metric at the chip level. Formulations for the exergy loss in simple air-cooled heat sink packages are developed, and application of the proposed approach is illustrated through two examples. The first comparatively assesses the loss in performance resulting from different cooling solutions, while the second examines the impact of non-uniformity in junction power in terms of the FoM. Modeling results on a 16mm×24mm chip indicate that uniform power and temperature profiles lead to minimal package irreversibility (and therefore the best thermodynamic performance). As the nonuniformity of power is increased, the performance rapidly degrades, particularly at higher power levels. Additionally, the competing needs of minimization of junction temperature and minimization of cooling power were highlighted using the exergy-based approach. It was shown that for a given power dissipation and a specific cooling architecture (such as an air-cooled heat sink solution), an optimal thermal resistance value exists beyond which the costs of increased cooling may outweigh any potential benefits in performance. Thus, the proposed FoM provides insight into thermofluidic inefficiencies that would be difficult to gain from a traditional first-law analysis. At a minimum, the framework presented in this paper enables quantitative evaluation of package performance for different nonuniform power inputs and different choices of cooling parameters. At best, since the FoM is scalable, the proposed metric has the potential to enable a chip-to-data-center strategy for optimal resource allocation.
    keyword(s): Exergy , Energy dissipation , Junctions , Temperature , Cooling AND Heat sinks ,
    • Download: (894.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Exergy-Based Figure-of-Merit for Electronic Packages

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/133498
    Collections
    • Journal of Electronic Packaging

    Show full item record

    contributor authorAmip J. Shah
    contributor authorCullen E. Bash
    contributor authorChandrakant D. Patel
    contributor authorVan P. Carey
    date accessioned2017-05-09T00:19:32Z
    date available2017-05-09T00:19:32Z
    date copyrightDecember, 2006
    date issued2006
    identifier issn1528-9044
    identifier otherJEPAE4-26266#360_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/133498
    description abstractChip power consumption and heat dissipation have become important design issues because of increased energy costs and thermal management limitations. As a global compute utility evolves, seamless connectivity from the chip to the data center will become increasingly important. The optimization of such an infrastructure will require performance metrics that can adequately capture the thermodynamic and compute behavior at multiple physical length scales. In this paper, an exergy-based figure-of-merit (FoM), defined as the ratio of computing performance (in MIPS) to the thermodynamic performance (in exergy loss), is proposed for the evaluation of computational performance. The paper presents the framework to apply this metric at the chip level. Formulations for the exergy loss in simple air-cooled heat sink packages are developed, and application of the proposed approach is illustrated through two examples. The first comparatively assesses the loss in performance resulting from different cooling solutions, while the second examines the impact of non-uniformity in junction power in terms of the FoM. Modeling results on a 16mm×24mm chip indicate that uniform power and temperature profiles lead to minimal package irreversibility (and therefore the best thermodynamic performance). As the nonuniformity of power is increased, the performance rapidly degrades, particularly at higher power levels. Additionally, the competing needs of minimization of junction temperature and minimization of cooling power were highlighted using the exergy-based approach. It was shown that for a given power dissipation and a specific cooling architecture (such as an air-cooled heat sink solution), an optimal thermal resistance value exists beyond which the costs of increased cooling may outweigh any potential benefits in performance. Thus, the proposed FoM provides insight into thermofluidic inefficiencies that would be difficult to gain from a traditional first-law analysis. At a minimum, the framework presented in this paper enables quantitative evaluation of package performance for different nonuniform power inputs and different choices of cooling parameters. At best, since the FoM is scalable, the proposed metric has the potential to enable a chip-to-data-center strategy for optimal resource allocation.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Exergy-Based Figure-of-Merit for Electronic Packages
    typeJournal Paper
    journal volume128
    journal issue4
    journal titleJournal of Electronic Packaging
    identifier doi10.1115/1.2351901
    journal fristpage360
    journal lastpage369
    identifier eissn1043-7398
    keywordsExergy
    keywordsEnergy dissipation
    keywordsJunctions
    keywordsTemperature
    keywordsCooling AND Heat sinks
    treeJournal of Electronic Packaging:;2006:;volume( 128 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian