YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Exergy Cost of Information Processing: A Comparison of Computer-Based Technologies and Biological Systems

    Source: Journal of Electronic Packaging:;2006:;volume( 128 ):;issue: 004::page 346
    Author:
    V. P. Carey
    ,
    A. J. Shah
    DOI: 10.1115/1.2351899
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Processing information (analysis, storing, retrieving, sharing) is the primary function of modern computer-based information systems. Systems of this type generally require an input flow of exergy (available energy) to function. Information processing systems now are evolving in two directions. One direction is toward bigger and more sophisticated systems. The other is toward systems that are more compact and portable. In both cases, the energy efficiency is becoming an increasingly important design issue. This paper summarizes an exploration of the exergy cost of processing information at the component and system levels in state-of-the-art information processing systems. The energy efficiency characteristics of computer-based information technologies are also compared to estimates of the energy efficiency of biological information processing in brains of mammals. Energy efficiencies of processors and systems are quantified in terms of the ratio of processing capacity to the exergy input rate. Available data suggest that for recent generations of processors, the ratio of processing capacity to exergy input rate has been increasing proportional to the square root of processor speed. Despite this increase, the energy efficiency of computer-based systems is currently substantially below the estimated efficiency of biological systems. Unless processor energy efficiencies are greatly increased, the development of information processing systems that match human brain performance will be hindered by the need for large power supplies and high-capacity heat rejection systems.
    keyword(s): Exergy , Computers , Brain , Energy efficiency AND Heat ,
    • Download: (200.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Exergy Cost of Information Processing: A Comparison of Computer-Based Technologies and Biological Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/133496
    Collections
    • Journal of Electronic Packaging

    Show full item record

    contributor authorV. P. Carey
    contributor authorA. J. Shah
    date accessioned2017-05-09T00:19:32Z
    date available2017-05-09T00:19:32Z
    date copyrightDecember, 2006
    date issued2006
    identifier issn1528-9044
    identifier otherJEPAE4-26266#346_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/133496
    description abstractProcessing information (analysis, storing, retrieving, sharing) is the primary function of modern computer-based information systems. Systems of this type generally require an input flow of exergy (available energy) to function. Information processing systems now are evolving in two directions. One direction is toward bigger and more sophisticated systems. The other is toward systems that are more compact and portable. In both cases, the energy efficiency is becoming an increasingly important design issue. This paper summarizes an exploration of the exergy cost of processing information at the component and system levels in state-of-the-art information processing systems. The energy efficiency characteristics of computer-based information technologies are also compared to estimates of the energy efficiency of biological information processing in brains of mammals. Energy efficiencies of processors and systems are quantified in terms of the ratio of processing capacity to the exergy input rate. Available data suggest that for recent generations of processors, the ratio of processing capacity to exergy input rate has been increasing proportional to the square root of processor speed. Despite this increase, the energy efficiency of computer-based systems is currently substantially below the estimated efficiency of biological systems. Unless processor energy efficiencies are greatly increased, the development of information processing systems that match human brain performance will be hindered by the need for large power supplies and high-capacity heat rejection systems.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Exergy Cost of Information Processing: A Comparison of Computer-Based Technologies and Biological Systems
    typeJournal Paper
    journal volume128
    journal issue4
    journal titleJournal of Electronic Packaging
    identifier doi10.1115/1.2351899
    journal fristpage346
    journal lastpage352
    identifier eissn1043-7398
    keywordsExergy
    keywordsComputers
    keywordsBrain
    keywordsEnergy efficiency AND Heat
    treeJournal of Electronic Packaging:;2006:;volume( 128 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian