YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Reliability of an 1657CCGA (Ceramic Column Grid Array) Package With 95.5SN3.9AG0.6CU Lead-Free Solder Paste on PCBS (Printed Circuit Boards)

    Source: Journal of Electronic Packaging:;2005:;volume( 127 ):;issue: 002::page 96
    Author:
    John Lau
    ,
    ASME Fellow
    ,
    Walter Dauksher
    DOI: 10.1115/1.1846069
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In many applications such as computers and telecommunications, the IC chip sizes are very big, the on-chip frequency and power dissipation are very high, and the number of chip I/Os is very large. The CCGA (ceramic column grid array) package developed by IBM is one of the best candidates for housing these kinds of chips. There are two parts in this study. One is to show that the two-parameter Weibull life distribution is adequate for modeling the thermal-fatigue life of lead-free solder joints. This is demonstrated by comparing the two-parameter and three-parameter Weibull distributions with life test data of an 1657-pin CCGA package with the 95.5 wt %Sn3.9 wt %Ag0.6 wt %Cu lead-free solder paste on lead-free printed circuit boards under thermal cycling conditions. The other part of this study is to determine the time-history creep strain energy density of the 1657-pin CCGA solder column with two different solder paste materials, namely, 95.5 wt %Sn3.9 wt %Ag0.6 wt %Cu and 63 wt %Sn37 wt %Pb and under three different thermal cycling profiles, namely, 25↔75°C, 0↔100°C, and −25↔125°C. The effects of these solder pastes and temperature conditions on the thermal-fatigue life of the high-lead (10 wt %Sn90 wt %Pb) solder columns of the CCGA package are provided and discussed.
    keyword(s): Temperature , Ceramics , Solders , Reliability , Cycles , Lead-free solders , Printed circuit boards , Creep , Fatigue AND Density ,
    • Download: (780.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Reliability of an 1657CCGA (Ceramic Column Grid Array) Package With 95.5SN3.9AG0.6CU Lead-Free Solder Paste on PCBS (Printed Circuit Boards)

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/131647
    Collections
    • Journal of Electronic Packaging

    Show full item record

    contributor authorJohn Lau
    contributor authorASME Fellow
    contributor authorWalter Dauksher
    date accessioned2017-05-09T00:15:53Z
    date available2017-05-09T00:15:53Z
    date copyrightJune, 2005
    date issued2005
    identifier issn1528-9044
    identifier otherJEPAE4-26243#96_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/131647
    description abstractIn many applications such as computers and telecommunications, the IC chip sizes are very big, the on-chip frequency and power dissipation are very high, and the number of chip I/Os is very large. The CCGA (ceramic column grid array) package developed by IBM is one of the best candidates for housing these kinds of chips. There are two parts in this study. One is to show that the two-parameter Weibull life distribution is adequate for modeling the thermal-fatigue life of lead-free solder joints. This is demonstrated by comparing the two-parameter and three-parameter Weibull distributions with life test data of an 1657-pin CCGA package with the 95.5 wt %Sn3.9 wt %Ag0.6 wt %Cu lead-free solder paste on lead-free printed circuit boards under thermal cycling conditions. The other part of this study is to determine the time-history creep strain energy density of the 1657-pin CCGA solder column with two different solder paste materials, namely, 95.5 wt %Sn3.9 wt %Ag0.6 wt %Cu and 63 wt %Sn37 wt %Pb and under three different thermal cycling profiles, namely, 25↔75°C, 0↔100°C, and −25↔125°C. The effects of these solder pastes and temperature conditions on the thermal-fatigue life of the high-lead (10 wt %Sn90 wt %Pb) solder columns of the CCGA package are provided and discussed.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleReliability of an 1657CCGA (Ceramic Column Grid Array) Package With 95.5SN3.9AG0.6CU Lead-Free Solder Paste on PCBS (Printed Circuit Boards)
    typeJournal Paper
    journal volume127
    journal issue2
    journal titleJournal of Electronic Packaging
    identifier doi10.1115/1.1846069
    journal fristpage96
    journal lastpage105
    identifier eissn1043-7398
    keywordsTemperature
    keywordsCeramics
    keywordsSolders
    keywordsReliability
    keywordsCycles
    keywordsLead-free solders
    keywordsPrinted circuit boards
    keywordsCreep
    keywordsFatigue AND Density
    treeJournal of Electronic Packaging:;2005:;volume( 127 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian