contributor author | Weilin Qu | |
contributor author | Graduate Research Assistant | |
contributor author | Student Mem. ASME | |
contributor author | Issam Mudawar | |
date accessioned | 2017-05-09T00:12:43Z | |
date available | 2017-05-09T00:12:43Z | |
date copyright | June, 2004 | |
date issued | 2004 | |
identifier issn | 1528-9044 | |
identifier other | JEPAE4-26233#213_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/129869 | |
description abstract | The design and reliable operation of a two-phase micro-channel heat sink require a fundamental understanding of the complex transport phenomena associated with convective boiling in small, parallel coolant passages. This understanding is the primary goal of this paper. This goal is realized by exploring the following aspects of boiling in micro-channels: hydrodynamic instability, two-phase flow patterns, pressure drop, and convective boiling heat transfer. High-speed photographic methods were used to determine dominant flow patterns and explore as well as characterize hydrodynamic instabilities. Two types of dynamic instability were identified, a severe pressure drop oscillation and a mild parallel channel instability, and a simple method is recommended to completely suppress the former. Predictions of three popular two-phase pressure drop models and correlations were compared to micro-channel water data, and only a separated flow (Lockhart-Martinelli) correlation based on the assumption of laminar flow in both phases gave acceptable predictions. Several popular heat transfer correlations were also examined and deemed unsuitable for micro-channel heat sinks because all these correlations are based on turbulent flow assumptions, and do not capture the unique features of micro-channel flow such as abrupt transition to slug flow, hydrodynamic instability, and high droplet entrainment in the annular regime. These findings point to the need for further study of boiling behavior and new predictive tools specifically tailored to micro-channel heat sinks. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Transport Phenomena in Two-Phase Micro-Channel Heat Sinks | |
type | Journal Paper | |
journal volume | 126 | |
journal issue | 2 | |
journal title | Journal of Electronic Packaging | |
identifier doi | 10.1115/1.1756145 | |
journal fristpage | 213 | |
journal lastpage | 224 | |
identifier eissn | 1043-7398 | |
keywords | Flow (Dynamics) | |
keywords | Channels (Hydraulic engineering) | |
keywords | Boiling | |
keywords | Heat sinks | |
keywords | Pressure drop | |
keywords | Microchannels | |
keywords | Water | |
keywords | Two-phase flow | |
keywords | Temperature | |
keywords | Transport phenomena | |
keywords | Heat transfer AND Coolants | |
tree | Journal of Electronic Packaging:;2004:;volume( 126 ):;issue: 002 | |
contenttype | Fulltext | |