YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stress Analysis of Thermal Inclusions With Interior Voids and Cracks

    Source: Journal of Electronic Packaging:;2000:;volume( 122 ):;issue: 003::page 192
    Author:
    C. Q. Ru
    DOI: 10.1115/1.1286020
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Thermal mismatch induced residual stresses are identified as one of the major causes of voiding and failure of some critical components in electronic packaging, such as passivated interconnect lines and isolation trenches. In this paper, a general method is presented for thermal stress analysis of an embedded structural element in the presence of internal or nearby voids and cracks. Here, the elastic mismatch between dissimilar materials is ignored. Hence, the embedded structural element is modeled as a thermal inclusion of arbitrary shape surrounded by an infinite elastic medium of the same elastic constants. Thermal stresses are caused by thermal mismatch between the inclusion and the surrounding material due to a uniform change in temperature. With the present method, the problem is reduced to one of an infinite homogeneous medium containing the same voids and cracks, subjected to a set of remote stresses determined by the geometrical shape of the thermal inclusion. In particular, the remote stresses are uniform when the thermal inclusion is an ellipse. The method gives an elementary expression for the internal stress field of a thermal inclusion with a single interior void or crack. Several examples of practical interest are used to illustrate the method. The results show that an internal void or crack can significantly change stress distribution within the inclusion and gives rise to stress concentration around the void or crack. [S1043-7398(00)00303-0]
    keyword(s): Stress , Fracture (Materials) , Stress analysis (Engineering) AND Shapes ,
    • Download: (133.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stress Analysis of Thermal Inclusions With Interior Voids and Cracks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/123535
    Collections
    • Journal of Electronic Packaging

    Show full item record

    contributor authorC. Q. Ru
    date accessioned2017-05-09T00:02:11Z
    date available2017-05-09T00:02:11Z
    date copyrightSeptember, 2000
    date issued2000
    identifier issn1528-9044
    identifier otherJEPAE4-26184#192_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/123535
    description abstractThermal mismatch induced residual stresses are identified as one of the major causes of voiding and failure of some critical components in electronic packaging, such as passivated interconnect lines and isolation trenches. In this paper, a general method is presented for thermal stress analysis of an embedded structural element in the presence of internal or nearby voids and cracks. Here, the elastic mismatch between dissimilar materials is ignored. Hence, the embedded structural element is modeled as a thermal inclusion of arbitrary shape surrounded by an infinite elastic medium of the same elastic constants. Thermal stresses are caused by thermal mismatch between the inclusion and the surrounding material due to a uniform change in temperature. With the present method, the problem is reduced to one of an infinite homogeneous medium containing the same voids and cracks, subjected to a set of remote stresses determined by the geometrical shape of the thermal inclusion. In particular, the remote stresses are uniform when the thermal inclusion is an ellipse. The method gives an elementary expression for the internal stress field of a thermal inclusion with a single interior void or crack. Several examples of practical interest are used to illustrate the method. The results show that an internal void or crack can significantly change stress distribution within the inclusion and gives rise to stress concentration around the void or crack. [S1043-7398(00)00303-0]
    publisherThe American Society of Mechanical Engineers (ASME)
    titleStress Analysis of Thermal Inclusions With Interior Voids and Cracks
    typeJournal Paper
    journal volume122
    journal issue3
    journal titleJournal of Electronic Packaging
    identifier doi10.1115/1.1286020
    journal fristpage192
    journal lastpage199
    identifier eissn1043-7398
    keywordsStress
    keywordsFracture (Materials)
    keywordsStress analysis (Engineering) AND Shapes
    treeJournal of Electronic Packaging:;2000:;volume( 122 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian