YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Control of Deep-Hysteresis Aeroengine Compressors1

    Source: Journal of Dynamic Systems, Measurement, and Control:;2000:;volume( 122 ):;issue: 001::page 140
    Author:
    Hsin-Hsiung Wang
    ,
    Miroslav Krstić
    ,
    Michael Larsen
    DOI: 10.1115/1.482436
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Frequencies of higher-order modes of fluid dynamic phenomena participating in aeroengine compressor instabilities far exceed the bandwidth of available (affordable) actuators. For this reason, most of the heretofore experimentally validated control designs for aeroengine compressors have been via low-order models—specifically, via the famous Moore-Greitzer cubic model (MG3). While MG3 provides a good qualitative description of open-loop dynamic behavior, it does not capture the main difficulties for control design. In particular, it fails to exhibit the so-called “right-skew” property which distinguishes the deep hysteresis observed on high-performance axial compressors from a small hysteresis present in the MG3 model. In this paper we study fundamental feedback control problems associated with deep-hysteresis compressors. We first derive a parametrization of the MG3 model which exhibits the right skew property. Our approach is based on representing the compressor characteristic as a convex combination of a usual cubic polynomial and a nonpolynomial term carefully chosen so that an entire family of right-skew compressors can be spanned using a single parameter ε. Then we develop a family of controllers which are applicable not only to the particular parametrization, but to general Moore-Greitzer type models with arbitrary compressor characteristics. For each of our controllers we show that it achieves a supercritical (soft) bifurcation, that is, instead of an abrupt drop into rotating stall, it guarantees a gentle descent with a small stall amplitude. Two of the controllers have novel, simple, sensing requirements: one employs only the measurement of pressure rise and rotating stall amplitude, while the other uses only pressure rise and the mass flow rate (1D sensing). Some of the controllers which show excellent results for the MG3 model fail on the deep-hysteresis compressor model, thus justifying our focus on deep-hysteresis compressors. Our results also confirm experimentally observed difficulties for control of compressors that have a high value of Greitzer’s B parameter. We address another key issue for control of rotating stall and surge—the limited actuator bandwidth—which is critical because even the fastest control valves are often too slow compared to the rates of compressor instabilities. Our conditions show an interesting trade-off: as the actuator bandwidth decreases, the sensing requirements become more demanding. Finally, we go on to disprove a general conjecture in the compressor control community that the feedback of mass flow rate, known to be beneficial for shallow-hysteresis compressors, is also beneficial for deep-hysteresis compressors. [S0022-0434(00)03101-4]
    keyword(s): Control equipment , Compressors , Bifurcation , Stall inception , Feedback AND Stability ,
    • Download: (239.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Control of Deep-Hysteresis Aeroengine Compressors1

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/123506
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorHsin-Hsiung Wang
    contributor authorMiroslav Krstić
    contributor authorMichael Larsen
    date accessioned2017-05-09T00:02:08Z
    date available2017-05-09T00:02:08Z
    date copyrightMarch, 2000
    date issued2000
    identifier issn0022-0434
    identifier otherJDSMAA-26262#140_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/123506
    description abstractFrequencies of higher-order modes of fluid dynamic phenomena participating in aeroengine compressor instabilities far exceed the bandwidth of available (affordable) actuators. For this reason, most of the heretofore experimentally validated control designs for aeroengine compressors have been via low-order models—specifically, via the famous Moore-Greitzer cubic model (MG3). While MG3 provides a good qualitative description of open-loop dynamic behavior, it does not capture the main difficulties for control design. In particular, it fails to exhibit the so-called “right-skew” property which distinguishes the deep hysteresis observed on high-performance axial compressors from a small hysteresis present in the MG3 model. In this paper we study fundamental feedback control problems associated with deep-hysteresis compressors. We first derive a parametrization of the MG3 model which exhibits the right skew property. Our approach is based on representing the compressor characteristic as a convex combination of a usual cubic polynomial and a nonpolynomial term carefully chosen so that an entire family of right-skew compressors can be spanned using a single parameter ε. Then we develop a family of controllers which are applicable not only to the particular parametrization, but to general Moore-Greitzer type models with arbitrary compressor characteristics. For each of our controllers we show that it achieves a supercritical (soft) bifurcation, that is, instead of an abrupt drop into rotating stall, it guarantees a gentle descent with a small stall amplitude. Two of the controllers have novel, simple, sensing requirements: one employs only the measurement of pressure rise and rotating stall amplitude, while the other uses only pressure rise and the mass flow rate (1D sensing). Some of the controllers which show excellent results for the MG3 model fail on the deep-hysteresis compressor model, thus justifying our focus on deep-hysteresis compressors. Our results also confirm experimentally observed difficulties for control of compressors that have a high value of Greitzer’s B parameter. We address another key issue for control of rotating stall and surge—the limited actuator bandwidth—which is critical because even the fastest control valves are often too slow compared to the rates of compressor instabilities. Our conditions show an interesting trade-off: as the actuator bandwidth decreases, the sensing requirements become more demanding. Finally, we go on to disprove a general conjecture in the compressor control community that the feedback of mass flow rate, known to be beneficial for shallow-hysteresis compressors, is also beneficial for deep-hysteresis compressors. [S0022-0434(00)03101-4]
    publisherThe American Society of Mechanical Engineers (ASME)
    titleControl of Deep-Hysteresis Aeroengine Compressors1
    typeJournal Paper
    journal volume122
    journal issue1
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.482436
    journal fristpage140
    journal lastpage152
    identifier eissn1528-9028
    keywordsControl equipment
    keywordsCompressors
    keywordsBifurcation
    keywordsStall inception
    keywordsFeedback AND Stability
    treeJournal of Dynamic Systems, Measurement, and Control:;2000:;volume( 122 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian