YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fractal Estimation of Flank Wear in Turning

    Source: Journal of Dynamic Systems, Measurement, and Control:;2000:;volume( 122 ):;issue: 001::page 89
    Author:
    Satish T. S. Bukkapatnam
    ,
    Assistant Professor of Industrial and Systems Engineering
    ,
    Soundar R. T. Kumara
    ,
    Professor of Industrial and Manufacturing Engineering
    ,
    Akhlesh Lakhtakia
    ,
    Professor of Engineering Science and Mechanics
    DOI: 10.1115/1.482446
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A novel fractal estimation methodology, that uses—for the first time in metal cutting literature—fractal properties of machining dynamics for online estimation of cutting tool flank wear, is presented. The fractal dimensions of the attractor of machining dynamics are extracted from a collection of sensor signals using a suite of signal processing methods comprising wavelet representation and signal separation, and are related to the instantaneous flank wear using a recurrent neural network. The performance of the resulting estimator, evaluated using actual experimental data, establishes our methodology to be viable for online flank wear estimation. This methodology is adequately generic for sensor-based prediction of gradual damage in mechanical systems, specifically manufacturing processes. [S0022-0434(00)02401-1]
    keyword(s): Machining , Sensors , Dimensions , Artificial neural networks , Fractals , Signals , Dynamics (Mechanics) , Wear , Separation (Technology) , Turning AND Wavelets ,
    • Download: (146.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fractal Estimation of Flank Wear in Turning

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/123497
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorSatish T. S. Bukkapatnam
    contributor authorAssistant Professor of Industrial and Systems Engineering
    contributor authorSoundar R. T. Kumara
    contributor authorProfessor of Industrial and Manufacturing Engineering
    contributor authorAkhlesh Lakhtakia
    contributor authorProfessor of Engineering Science and Mechanics
    date accessioned2017-05-09T00:02:08Z
    date available2017-05-09T00:02:08Z
    date copyrightMarch, 2000
    date issued2000
    identifier issn0022-0434
    identifier otherJDSMAA-26262#89_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/123497
    description abstractA novel fractal estimation methodology, that uses—for the first time in metal cutting literature—fractal properties of machining dynamics for online estimation of cutting tool flank wear, is presented. The fractal dimensions of the attractor of machining dynamics are extracted from a collection of sensor signals using a suite of signal processing methods comprising wavelet representation and signal separation, and are related to the instantaneous flank wear using a recurrent neural network. The performance of the resulting estimator, evaluated using actual experimental data, establishes our methodology to be viable for online flank wear estimation. This methodology is adequately generic for sensor-based prediction of gradual damage in mechanical systems, specifically manufacturing processes. [S0022-0434(00)02401-1]
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFractal Estimation of Flank Wear in Turning
    typeJournal Paper
    journal volume122
    journal issue1
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.482446
    journal fristpage89
    journal lastpage94
    identifier eissn1528-9028
    keywordsMachining
    keywordsSensors
    keywordsDimensions
    keywordsArtificial neural networks
    keywordsFractals
    keywordsSignals
    keywordsDynamics (Mechanics)
    keywordsWear
    keywordsSeparation (Technology)
    keywordsTurning AND Wavelets
    treeJournal of Dynamic Systems, Measurement, and Control:;2000:;volume( 122 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian