YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Block Control Principle for Mechanical Systems

    Source: Journal of Dynamic Systems, Measurement, and Control:;2000:;volume( 122 ):;issue: 001::page 1
    Author:
    Vadim I. Utkin
    ,
    De-Shiou Chen
    ,
    Hao-Chi Chang
    ,
    Graduate Research Associate
    DOI: 10.1115/1.482422
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, a generalized design procedure for sliding mode control of nonlinear mechanical systems is proposed. The design approach combines the essential idea of the block control principle, utilizing some of the components of the state vector as a virtual control, with the basic concept of zero dynamics. For mechanical systems governed by a set of interconnected second-order equations, the block control principle cannot be directly applied. To facilitate the controller design, we assume that control systems can be transformed into a regular form consisting of second-order equations. The proposed design approach consists of reducing the original plant into the regular form, constructing a switching manifold, and enforcing sliding mode in the manifold such that the reduced order system in sliding mode has desired dynamics. Stabilization of the mechanical system with unstable zero dynamics is taken into consideration. It is shown that the approach has the advantage of decomposing the original problem into subproblems of lower dimensions, and each of them can be handled independently. As an example, control of a rotational inverted pendulum system is examined. The performance of the proposed approach is validated by both numerical and experimental results. [S0022-0434(00)01601-4]
    keyword(s): Dynamics (Mechanics) , Control systems , Control equipment , Sliding mode control , Design , Equations , Manifolds , Pendulums , Equilibrium (Physics) AND Industrial plants ,
    • Download: (287.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Block Control Principle for Mechanical Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/123486
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorVadim I. Utkin
    contributor authorDe-Shiou Chen
    contributor authorHao-Chi Chang
    contributor authorGraduate Research Associate
    date accessioned2017-05-09T00:02:07Z
    date available2017-05-09T00:02:07Z
    date copyrightMarch, 2000
    date issued2000
    identifier issn0022-0434
    identifier otherJDSMAA-26262#1_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/123486
    description abstractIn this paper, a generalized design procedure for sliding mode control of nonlinear mechanical systems is proposed. The design approach combines the essential idea of the block control principle, utilizing some of the components of the state vector as a virtual control, with the basic concept of zero dynamics. For mechanical systems governed by a set of interconnected second-order equations, the block control principle cannot be directly applied. To facilitate the controller design, we assume that control systems can be transformed into a regular form consisting of second-order equations. The proposed design approach consists of reducing the original plant into the regular form, constructing a switching manifold, and enforcing sliding mode in the manifold such that the reduced order system in sliding mode has desired dynamics. Stabilization of the mechanical system with unstable zero dynamics is taken into consideration. It is shown that the approach has the advantage of decomposing the original problem into subproblems of lower dimensions, and each of them can be handled independently. As an example, control of a rotational inverted pendulum system is examined. The performance of the proposed approach is validated by both numerical and experimental results. [S0022-0434(00)01601-4]
    publisherThe American Society of Mechanical Engineers (ASME)
    titleBlock Control Principle for Mechanical Systems
    typeJournal Paper
    journal volume122
    journal issue1
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.482422
    journal fristpage1
    journal lastpage10
    identifier eissn1528-9028
    keywordsDynamics (Mechanics)
    keywordsControl systems
    keywordsControl equipment
    keywordsSliding mode control
    keywordsDesign
    keywordsEquations
    keywordsManifolds
    keywordsPendulums
    keywordsEquilibrium (Physics) AND Industrial plants
    treeJournal of Dynamic Systems, Measurement, and Control:;2000:;volume( 122 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian