YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Globally Feedback Linearizable Time-Invariant Systems: Optimal Solution for Mayer’s Problem

    Source: Journal of Dynamic Systems, Measurement, and Control:;2000:;volume( 122 ):;issue: 002::page 343
    Author:
    M. Schlemmer
    ,
    Feodor Lynen Post-Doctoral Scholar
    ,
    S. K. Agrawal
    DOI: 10.1115/1.482461
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper discusses the optimal solution of Mayer’s problem for globally feedback linearizable time-invariant systems subject to general nonlinear path and actuator constraints. This class of problems includes the minimum time problem, important for engineering applications. Globally feedback linearizable nonlinear systems are diffeomorphic to linear systems that consist of blocks of integrators. Using this alternate form, it is proved that the optimal solution always lies on a constraint arc. As a result of this optimal structure of the solution, efficient numerical procedures can be developed. For a single input system, this result allows to characterize and build the optimal solution. The associated multi-point boundary value problem is then solved using direct solution techniques. [S0022-0434(00)02002-5]
    keyword(s): Trajectories (Physics) , Boundary-value problems , Feedback , Differential equations , Nonlinear systems , Theorems (Mathematics) AND Linear systems ,
    • Download: (142.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Globally Feedback Linearizable Time-Invariant Systems: Optimal Solution for Mayer’s Problem

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/123483
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorM. Schlemmer
    contributor authorFeodor Lynen Post-Doctoral Scholar
    contributor authorS. K. Agrawal
    date accessioned2017-05-09T00:02:06Z
    date available2017-05-09T00:02:06Z
    date copyrightJune, 2000
    date issued2000
    identifier issn0022-0434
    identifier otherJDSMAA-26267#343_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/123483
    description abstractThis paper discusses the optimal solution of Mayer’s problem for globally feedback linearizable time-invariant systems subject to general nonlinear path and actuator constraints. This class of problems includes the minimum time problem, important for engineering applications. Globally feedback linearizable nonlinear systems are diffeomorphic to linear systems that consist of blocks of integrators. Using this alternate form, it is proved that the optimal solution always lies on a constraint arc. As a result of this optimal structure of the solution, efficient numerical procedures can be developed. For a single input system, this result allows to characterize and build the optimal solution. The associated multi-point boundary value problem is then solved using direct solution techniques. [S0022-0434(00)02002-5]
    publisherThe American Society of Mechanical Engineers (ASME)
    titleGlobally Feedback Linearizable Time-Invariant Systems: Optimal Solution for Mayer’s Problem
    typeJournal Paper
    journal volume122
    journal issue2
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.482461
    journal fristpage343
    journal lastpage347
    identifier eissn1528-9028
    keywordsTrajectories (Physics)
    keywordsBoundary-value problems
    keywordsFeedback
    keywordsDifferential equations
    keywordsNonlinear systems
    keywordsTheorems (Mathematics) AND Linear systems
    treeJournal of Dynamic Systems, Measurement, and Control:;2000:;volume( 122 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian