contributor author | Hui Zhang | |
contributor author | Asok Ray | |
date accessioned | 2017-05-08T23:59:12Z | |
date available | 2017-05-08T23:59:12Z | |
date copyright | September, 1999 | |
date issued | 1999 | |
identifier issn | 0022-0434 | |
identifier other | JDSMAA-26257#377_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/121893 | |
description abstract | The goal of damage-mitigating control is to achieve high performance of operating machinery without overstraining the mechanical structures and the potential benefit is an increase in the component service life with no significant loss of performance. This paper presents the design of a test apparatus, the synthesis of a damage-mitigating control system, and the results of experimentation where the objective is to demonstrate the concept of fatigue damage reduction as an extension of multivariable robust feedback control. The test apparatus is built upon a three-degree-of-freedom, two-input three-output mechanical structure. The methodology of the damage-mitigating control synthesis is built upon the principles of: (i) frequency-domain identification of the plant dynamics and modeling of uncertainties in the state-space setting; and (ii) robust control based on the H∞ approach by taking both plant dynamic performance and material degradation of structural components into consideration. Case studies on the test apparatus indicate that fatigue life of specimens can be substantially extended with no appreciable degradation in the dynamic performance of the mechanical system. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Robust Damage-Mitigating Control of Mechanical Systems: Experimental Validation on a Test Apparatus | |
type | Journal Paper | |
journal volume | 121 | |
journal issue | 3 | |
journal title | Journal of Dynamic Systems, Measurement, and Control | |
identifier doi | 10.1115/1.2802485 | |
journal fristpage | 377 | |
journal lastpage | 385 | |
identifier eissn | 1528-9028 | |
keywords | Dynamics (Mechanics) | |
keywords | Machinery | |
keywords | Control systems | |
keywords | Service life (Equipment) | |
keywords | Design | |
keywords | Materials degradation | |
keywords | Modeling | |
keywords | Robust control | |
keywords | Fatigue damage | |
keywords | Fatigue life | |
keywords | Feedback | |
keywords | Industrial plants AND Mechanical structures | |
tree | Journal of Dynamic Systems, Measurement, and Control:;1999:;volume( 121 ):;issue: 003 | |
contenttype | Fulltext | |