YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Identification of a Flow Orifice Using a Neural Network and the Conjugate Gradient Method

    Source: Journal of Dynamic Systems, Measurement, and Control:;1996:;volume( 118 ):;issue: 002::page 272
    Author:
    X. P. Xu
    ,
    R. T. Burton
    ,
    C. M. Sargent
    DOI: 10.1115/1.2802314
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: An experimental approach of using a neural network model to identifying a nonlinear non-pressure-compensated flow valve is described in this paper. The conjugate gradient method with Polak-Ribiere formula is applied to train the neural network to approximate the nonlinear relationships represented by noisy data. The ability of the trained neural network to reproduce and to generalize is demonstrated by its excellent approximation of the experimental data. The training algorithm derived from the conjugate gradient method is shown to lead to a stable solution.
    • Download: (673.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Identification of a Flow Orifice Using a Neural Network and the Conjugate Gradient Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/116710
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorX. P. Xu
    contributor authorR. T. Burton
    contributor authorC. M. Sargent
    date accessioned2017-05-08T23:49:44Z
    date available2017-05-08T23:49:44Z
    date copyrightJune, 1996
    date issued1996
    identifier issn0022-0434
    identifier otherJDSMAA-26224#272_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/116710
    description abstractAn experimental approach of using a neural network model to identifying a nonlinear non-pressure-compensated flow valve is described in this paper. The conjugate gradient method with Polak-Ribiere formula is applied to train the neural network to approximate the nonlinear relationships represented by noisy data. The ability of the trained neural network to reproduce and to generalize is demonstrated by its excellent approximation of the experimental data. The training algorithm derived from the conjugate gradient method is shown to lead to a stable solution.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Identification of a Flow Orifice Using a Neural Network and the Conjugate Gradient Method
    typeJournal Paper
    journal volume118
    journal issue2
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.2802314
    journal fristpage272
    journal lastpage277
    identifier eissn1528-9028
    treeJournal of Dynamic Systems, Measurement, and Control:;1996:;volume( 118 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian