YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On-Line Preload Monitoring for Anti-Friction Spindle Beatings of High-Speed Machine Tools

    Source: Journal of Dynamic Systems, Measurement, and Control:;1995:;volume( 117 ):;issue: 001::page 43
    Author:
    Jay F. Tu
    ,
    Jeffrey L. Stein
    DOI: 10.1115/1.2798522
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Catastrophic and premature bearing failure caused by excessive thermally-induced bearing preload is a major design problem for spindle bearings in high-speed machine tools. Due to a lack of low cost and easy to maintain on-line preload measuring techniques, the traditional solution is to limit the maximum spindle speed and the initial bearing preload. This solution is incompatible with the trend of high-speed machining, which requires increasing both spindle speed and spindle stiffness. Therefore, it would be valuable if thermally-induced preload can be monitored on-line for regulating bearing thermal behavior at high speeds. This paper proposes using a dynamic state observer based on a preload model to estimate the spindle bearing preload via low cost thermocouples attached to the bearing outer ring and the spindle housing. The observer is based on a state-space model capable of describing the transient preload behavior of the spindle bearing. The temperatures of the outer ring and housing are used as the feedback signals for the preload observer. The observer gains are determined systematically to account for modeling errors, unknown parameters, nonlinearities, and measurement noise. In particular, the modeling errors due to unexpected factors such as bearing skidding, wear, and lubricant deterioration are compensated by a Modeling Error Compensator (MEC). By using the MEC, the error dynamics of the observer can be converted into a form suitable for applying existing observer techniques such as the Extended Kalman Filter (EKF). This preload observer has been successfully validated on two different bearing configurations operated at different speeds. The results show that the model-based monitoring technique, which combines the measurement of outer ring and housing temperature and a robust state observer, can be an effective and low-cost solution for preload monitoring in high-speed machine tools.
    • Download: (1.156Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On-Line Preload Monitoring for Anti-Friction Spindle Beatings of High-Speed Machine Tools

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/115117
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorJay F. Tu
    contributor authorJeffrey L. Stein
    date accessioned2017-05-08T23:46:51Z
    date available2017-05-08T23:46:51Z
    date copyrightMarch, 1995
    date issued1995
    identifier issn0022-0434
    identifier otherJDSMAA-26213#43_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/115117
    description abstractCatastrophic and premature bearing failure caused by excessive thermally-induced bearing preload is a major design problem for spindle bearings in high-speed machine tools. Due to a lack of low cost and easy to maintain on-line preload measuring techniques, the traditional solution is to limit the maximum spindle speed and the initial bearing preload. This solution is incompatible with the trend of high-speed machining, which requires increasing both spindle speed and spindle stiffness. Therefore, it would be valuable if thermally-induced preload can be monitored on-line for regulating bearing thermal behavior at high speeds. This paper proposes using a dynamic state observer based on a preload model to estimate the spindle bearing preload via low cost thermocouples attached to the bearing outer ring and the spindle housing. The observer is based on a state-space model capable of describing the transient preload behavior of the spindle bearing. The temperatures of the outer ring and housing are used as the feedback signals for the preload observer. The observer gains are determined systematically to account for modeling errors, unknown parameters, nonlinearities, and measurement noise. In particular, the modeling errors due to unexpected factors such as bearing skidding, wear, and lubricant deterioration are compensated by a Modeling Error Compensator (MEC). By using the MEC, the error dynamics of the observer can be converted into a form suitable for applying existing observer techniques such as the Extended Kalman Filter (EKF). This preload observer has been successfully validated on two different bearing configurations operated at different speeds. The results show that the model-based monitoring technique, which combines the measurement of outer ring and housing temperature and a robust state observer, can be an effective and low-cost solution for preload monitoring in high-speed machine tools.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOn-Line Preload Monitoring for Anti-Friction Spindle Beatings of High-Speed Machine Tools
    typeJournal Paper
    journal volume117
    journal issue1
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.2798522
    journal fristpage43
    journal lastpage53
    identifier eissn1528-9028
    treeJournal of Dynamic Systems, Measurement, and Control:;1995:;volume( 117 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian