YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Chebyshev-Based State Representation for Linear Quadratic Optimal Control

    Source: Journal of Dynamic Systems, Measurement, and Control:;1993:;volume( 115 ):;issue: 001::page 1
    Author:
    M. L. Nagurka
    ,
    S.-K. Wang
    DOI: 10.1115/1.2897400
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A computationally attractive method for determining the optimal control of unconstrained linear dynamic systems with quadratic performance indices is presented. In the proposed method, the difference between each state variable and its initial condition is represented by a finite-term shifted Chebyshev series. The representation leads to a system of linear algebraic equations as the necessary condition of optimality. Simulation studies demonstrate computational advantages relative to a standard Riccati-based method, a transition matrix method, and a previous Fourier-based method.
    keyword(s): Optimal control , Equations , Linear dynamic system AND Simulation ,
    • Download: (578.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Chebyshev-Based State Representation for Linear Quadratic Optimal Control

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/111696
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorM. L. Nagurka
    contributor authorS.-K. Wang
    date accessioned2017-05-08T23:40:55Z
    date available2017-05-08T23:40:55Z
    date copyrightMarch, 1993
    date issued1993
    identifier issn0022-0434
    identifier otherJDSMAA-26191#1_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/111696
    description abstractA computationally attractive method for determining the optimal control of unconstrained linear dynamic systems with quadratic performance indices is presented. In the proposed method, the difference between each state variable and its initial condition is represented by a finite-term shifted Chebyshev series. The representation leads to a system of linear algebraic equations as the necessary condition of optimality. Simulation studies demonstrate computational advantages relative to a standard Riccati-based method, a transition matrix method, and a previous Fourier-based method.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Chebyshev-Based State Representation for Linear Quadratic Optimal Control
    typeJournal Paper
    journal volume115
    journal issue1
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.2897400
    journal fristpage1
    journal lastpage6
    identifier eissn1528-9028
    keywordsOptimal control
    keywordsEquations
    keywordsLinear dynamic system AND Simulation
    treeJournal of Dynamic Systems, Measurement, and Control:;1993:;volume( 115 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian