YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Automated Robotic Deburring of Parts Using Compliance Control

    Source: Journal of Dynamic Systems, Measurement, and Control:;1991:;volume( 113 ):;issue: 001::page 60
    Author:
    M. G. Her
    ,
    H. Kazerooni
    DOI: 10.1115/1.2896360
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This work presents a method for robotic deburring of two-dimensional planar parts with unknown geometry. Robotic deburring requires “compliancy” and “stiffness” in the robot in the directions tangent and normal to the part, respectively. Compliancy in the tangential direction allows robotic accommodation of tangential cutting forces, while stiffness in the normal direction impedes a robotic response to normal cutting forces. But, to track the part contour, the robot requires compliancy in the normal direction. These conflicting requirements are addressed in this article as two problems: control of the metal removal process and tracking of the part contour. In general, these two problems are coupled; however, here they are separated into a hardware problem and a control problem. A tracking mechanism has been designed and built which incorporates a roller bearing mounted on a force sensor at the robot endpoint. This force sensor is located directly below the cutter and measures the contact forces which are the input to the tracking controller. These contact forces are used not only to calculate the normal vector to the part surface, but also to generate compliancy in the robot. However, the deburring algorithm uses another set of forces (cutting forces generated by the cutter) to produce a stable metal removal process. This deburring control method guarantees compliancy and stiffness in the robot in response to the tangential and normal cutting forces, respectively. Experimental results are given to show the effectiveness of this method for deburring of two-dimensional parts with unknown geometry.
    • Download: (1.371Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Automated Robotic Deburring of Parts Using Compliance Control

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/108324
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorM. G. Her
    contributor authorH. Kazerooni
    date accessioned2017-05-08T23:35:08Z
    date available2017-05-08T23:35:08Z
    date copyrightMarch, 1991
    date issued1991
    identifier issn0022-0434
    identifier otherJDSMAA-26164#60_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/108324
    description abstractThis work presents a method for robotic deburring of two-dimensional planar parts with unknown geometry. Robotic deburring requires “compliancy” and “stiffness” in the robot in the directions tangent and normal to the part, respectively. Compliancy in the tangential direction allows robotic accommodation of tangential cutting forces, while stiffness in the normal direction impedes a robotic response to normal cutting forces. But, to track the part contour, the robot requires compliancy in the normal direction. These conflicting requirements are addressed in this article as two problems: control of the metal removal process and tracking of the part contour. In general, these two problems are coupled; however, here they are separated into a hardware problem and a control problem. A tracking mechanism has been designed and built which incorporates a roller bearing mounted on a force sensor at the robot endpoint. This force sensor is located directly below the cutter and measures the contact forces which are the input to the tracking controller. These contact forces are used not only to calculate the normal vector to the part surface, but also to generate compliancy in the robot. However, the deburring algorithm uses another set of forces (cutting forces generated by the cutter) to produce a stable metal removal process. This deburring control method guarantees compliancy and stiffness in the robot in response to the tangential and normal cutting forces, respectively. Experimental results are given to show the effectiveness of this method for deburring of two-dimensional parts with unknown geometry.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAutomated Robotic Deburring of Parts Using Compliance Control
    typeJournal Paper
    journal volume113
    journal issue1
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.2896360
    journal fristpage60
    journal lastpage66
    identifier eissn1528-9028
    treeJournal of Dynamic Systems, Measurement, and Control:;1991:;volume( 113 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian