YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamics of Flexible Bodies Using Generalized Newton-Euler Equations

    Source: Journal of Dynamic Systems, Measurement, and Control:;1990:;volume( 112 ):;issue: 003::page 496
    Author:
    A. A. Shabana
    DOI: 10.1115/1.2896170
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A force acting on a rigid body produces a linear acceleration for the whole body together with an angular acceleration about its center of mass. This result is in fact Newton-Euler equations which are used as basis for developing many recursive formulations for open loop multibody systems consisting of interconnected rigid bodies. In this paper, generalized Newton-Euler equations are developed for deformable bodies that undergo large translational and rotational displacements. The configuration of the deformable body is identified using coupled sets of reference and elastic variables. The nonlinear generalized Newton-Euler equations are formulated in terms of a set of time invariant scalars and matrices that depend on the spatial coordinates as well as the assumed displacement field. A set of intermediate reference frames having no mass or inertia are introduced for the convenience of defining various joints between interconnected deformable bodies. The use of the obtained generalized Newton-Euler equations for developing recursive dynamic formulation for open loop deformable multibody systems containing revolute, prismatic and cylindrical joints is also discussed. The development presented in this paper demonstrates the complexities of the formulation and the difficulties encountered when the equations of motion are defined in the joint coordinate systems.
    • Download: (829.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamics of Flexible Bodies Using Generalized Newton-Euler Equations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/106685
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorA. A. Shabana
    date accessioned2017-05-08T23:32:13Z
    date available2017-05-08T23:32:13Z
    date copyrightSeptember, 1990
    date issued1990
    identifier issn0022-0434
    identifier otherJDSMAA-26134#496_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/106685
    description abstractA force acting on a rigid body produces a linear acceleration for the whole body together with an angular acceleration about its center of mass. This result is in fact Newton-Euler equations which are used as basis for developing many recursive formulations for open loop multibody systems consisting of interconnected rigid bodies. In this paper, generalized Newton-Euler equations are developed for deformable bodies that undergo large translational and rotational displacements. The configuration of the deformable body is identified using coupled sets of reference and elastic variables. The nonlinear generalized Newton-Euler equations are formulated in terms of a set of time invariant scalars and matrices that depend on the spatial coordinates as well as the assumed displacement field. A set of intermediate reference frames having no mass or inertia are introduced for the convenience of defining various joints between interconnected deformable bodies. The use of the obtained generalized Newton-Euler equations for developing recursive dynamic formulation for open loop deformable multibody systems containing revolute, prismatic and cylindrical joints is also discussed. The development presented in this paper demonstrates the complexities of the formulation and the difficulties encountered when the equations of motion are defined in the joint coordinate systems.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDynamics of Flexible Bodies Using Generalized Newton-Euler Equations
    typeJournal Paper
    journal volume112
    journal issue3
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.2896170
    journal fristpage496
    journal lastpage503
    identifier eissn1528-9028
    treeJournal of Dynamic Systems, Measurement, and Control:;1990:;volume( 112 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian