| contributor author | D. Hrovat | |
| contributor author | D. L. Margolis | |
| contributor author | M. Hubbard | |
| date accessioned | 2017-05-08T23:26:52Z | |
| date available | 2017-05-08T23:26:52Z | |
| date copyright | September, 1988 | |
| date issued | 1988 | |
| identifier issn | 0022-0434 | |
| identifier other | JDSMAA-26104#288_1.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/103725 | |
| description abstract | In this paper, a two-degree-of-freedom model of a semi-actively suspended vehicle is used as a starting point in the design of an optimal suspension. The optimization is performed with respect to a quadratic performance index reflecting suspension design constraints and ride quality requirements. Two closely related mathematical descriptions of the model are given, one leading to a linear and the other to a bilinear system of differential equations, with an additional inequality constraint reflecting the passivity of the semi-active device. Since the resulting stochastic optimization problem does not allow for a closed-form analytical solution, a numerical method is proposed as an approximate solution. The justification for the method is based on a recent existence theorem from stochastic optimal control theory. Illustrative simulation results of the optimization are presented. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | An Approach Toward the Optimal Semi-Active Suspension | |
| type | Journal Paper | |
| journal volume | 110 | |
| journal issue | 3 | |
| journal title | Journal of Dynamic Systems, Measurement, and Control | |
| identifier doi | 10.1115/1.3152684 | |
| journal fristpage | 288 | |
| journal lastpage | 296 | |
| identifier eissn | 1528-9028 | |
| tree | Journal of Dynamic Systems, Measurement, and Control:;1988:;volume( 110 ):;issue: 003 | |
| contenttype | Fulltext | |