YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stable Reduction of Linear Discrete-Time Systems Via a Multipoint Tangent Phase CFE

    Source: Journal of Dynamic Systems, Measurement, and Control:;1987:;volume( 109 ):;issue: 003::page 291
    Author:
    Chyi Hwang
    ,
    Muh-Yang Chen
    DOI: 10.1115/1.3143857
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents a procedure of linear discrete-time system reduction via a multipoint tangent phase continued-fraction expansion (CFE). The model reduction approach followed starts by transforming the z-domain tangent phase function into the u-domain one using the u-transformation u = z−1 + z. Subsequently, the u-domain tangent phase function is expanded into a multipoint continued fractions. The desired reduced z-transfer function is finally obtained by factorizing the truncated and inverted u-domain multipoint tangent phase CFE approximant. The main feature of the proposed method is that it not only guarantees the stability but also gives good overall approximations to both frequency and time responses of the given system.
    • Download: (436.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stable Reduction of Linear Discrete-Time Systems Via a Multipoint Tangent Phase CFE

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/102319
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorChyi Hwang
    contributor authorMuh-Yang Chen
    date accessioned2017-05-08T23:24:32Z
    date available2017-05-08T23:24:32Z
    date copyrightSeptember, 1987
    date issued1987
    identifier issn0022-0434
    identifier otherJDSMAA-26099#291_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/102319
    description abstractThis paper presents a procedure of linear discrete-time system reduction via a multipoint tangent phase continued-fraction expansion (CFE). The model reduction approach followed starts by transforming the z-domain tangent phase function into the u-domain one using the u-transformation u = z−1 + z. Subsequently, the u-domain tangent phase function is expanded into a multipoint continued fractions. The desired reduced z-transfer function is finally obtained by factorizing the truncated and inverted u-domain multipoint tangent phase CFE approximant. The main feature of the proposed method is that it not only guarantees the stability but also gives good overall approximations to both frequency and time responses of the given system.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleStable Reduction of Linear Discrete-Time Systems Via a Multipoint Tangent Phase CFE
    typeJournal Paper
    journal volume109
    journal issue3
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.3143857
    journal fristpage291
    journal lastpage294
    identifier eissn1528-9028
    treeJournal of Dynamic Systems, Measurement, and Control:;1987:;volume( 109 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian