contributor author | J. H. Wang | |
contributor author | H. F. Jen | |
contributor author | E. O. Hartel | |
date accessioned | 2017-05-08T23:20:14Z | |
date available | 2017-05-08T23:20:14Z | |
date copyright | January, 1985 | |
date issued | 1985 | |
identifier issn | 1528-8919 | |
identifier other | JETPEZ-26614#60_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/99870 | |
description abstract | A two-dimensional, boundary-layer program, STAN5, was modified to incorporate a low-Reynolds number version of the K-ε, two-equation turbulence model for the predictions of flow and heat transfer around turbine airfoils. The K-ε, two-equation model with optimized empirical correlations was used to account for the effects of free-stream turbulence and transitional flow. The model was compared with experimental flat plate data and then applied to turbine airfoil heat transfer prediction. A two-zone model was proposed for handling the turbulent kinetic energy and dissipation rate empirically at the airfoil leading edge region. The result showed that the predicted heat transfer coefficient on the airfoil agreed favorably with experimental data, especially for the pressure side. The discrepancy between predictions and experimental data of the suction surface normally occurred at transitional and fully turbulent flow regions. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Airfoil Heat Transfer Calculation Using a Low Reynolds Number Version of a Two-Equation Turbulence Model | |
type | Journal Paper | |
journal volume | 107 | |
journal issue | 1 | |
journal title | Journal of Engineering for Gas Turbines and Power | |
identifier doi | 10.1115/1.3239698 | |
journal fristpage | 60 | |
journal lastpage | 67 | |
identifier eissn | 0742-4795 | |
keywords | Heat transfer | |
keywords | Turbulence | |
keywords | Reynolds number | |
keywords | Equations | |
keywords | Airfoils | |
keywords | Turbines | |
keywords | Flow (Dynamics) | |
keywords | Pressure | |
keywords | Energy dissipation | |
keywords | Boundary layers | |
keywords | Suction | |
keywords | Kinetic energy | |
keywords | Flat plates AND Heat transfer coefficients | |
tree | Journal of Engineering for Gas Turbines and Power:;1985:;volume( 107 ):;issue: 001 | |
contenttype | Fulltext | |