YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Bilinear Theories in Plasticity and an Application to Two-Dimensional Wave Propagation

    Source: Journal of Applied Mechanics:;1964:;volume( 031 ):;issue: 002::page 181
    Author:
    H. R. Aggarwal
    ,
    Julius Miklowitz
    ,
    A. M. Soldate
    ,
    J. F. Hook
    DOI: 10.1115/1.3629584
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The Koehler and Seitz bilinear theory is generalized and related to a similar theory given by Swainger. It is shown that, in contradistinction to the corresponding Hencky theory, the generalized theory depends partially on the strain path, and further leads to linearization of the governing equations. An alternative form analogous to the generalized Hooke’s law is given. Displacement equations of motion for the bilinear model are derived and explicit expressions for plastic wave velocities obtained. Dynamic equations for cases previously considered in the literature are compared. As an application, the initial stress discontinuities for the problem of scattering of a plane compressional step wave by a rigid, perfectly dense cylinder are obtained.
    keyword(s): Plasticity , Wave propagation , Waves , Equations of motion , Electromagnetic scattering , Hooke's law , Cylinders , Displacement , Equations , Radiation scattering AND Stress ,
    • Download: (2.490Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Bilinear Theories in Plasticity and an Application to Two-Dimensional Wave Propagation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/98379
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorH. R. Aggarwal
    contributor authorJulius Miklowitz
    contributor authorA. M. Soldate
    contributor authorJ. F. Hook
    date accessioned2017-05-08T23:17:43Z
    date available2017-05-08T23:17:43Z
    date copyrightJune, 1964
    date issued1964
    identifier issn0021-8936
    identifier otherJAMCAV-25749#181_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/98379
    description abstractThe Koehler and Seitz bilinear theory is generalized and related to a similar theory given by Swainger. It is shown that, in contradistinction to the corresponding Hencky theory, the generalized theory depends partially on the strain path, and further leads to linearization of the governing equations. An alternative form analogous to the generalized Hooke’s law is given. Displacement equations of motion for the bilinear model are derived and explicit expressions for plastic wave velocities obtained. Dynamic equations for cases previously considered in the literature are compared. As an application, the initial stress discontinuities for the problem of scattering of a plane compressional step wave by a rigid, perfectly dense cylinder are obtained.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleBilinear Theories in Plasticity and an Application to Two-Dimensional Wave Propagation
    typeJournal Paper
    journal volume31
    journal issue2
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.3629584
    journal fristpage181
    journal lastpage188
    identifier eissn1528-9036
    keywordsPlasticity
    keywordsWave propagation
    keywordsWaves
    keywordsEquations of motion
    keywordsElectromagnetic scattering
    keywordsHooke's law
    keywordsCylinders
    keywordsDisplacement
    keywordsEquations
    keywordsRadiation scattering AND Stress
    treeJournal of Applied Mechanics:;1964:;volume( 031 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian