Show simple item record

contributor authorJ. J. Beaman
contributor authorJ. Karl Hedrick
date accessioned2017-05-08T23:10:50Z
date available2017-05-08T23:10:50Z
date copyrightMarch, 1981
date issued1981
identifier issn0022-0434
identifier otherJDSMAA-26064#14_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/94383
description abstractA practical method of improving the accuracy of the Gaussian statistical linearization technique is presented. The method uses a series expansion of the unknown probability density function which includes up to fourth order terms. It is shown that by the use of the Gram-Charlier expansion a simple generating function can be derived to evaluate analytically the integrals required. It is also shown how simplifying assumptions can be used to substantially reduce the required extra equations, e.g. symmetric or assymetric and single input nonlinearities. It is also shown that the eigenvalues of the statistically linearized system can be used to estimate the stability and speed of response of the nonlinear system. The reduced expansion technique is applied to first and second order nonlinear systems and the predicted mean square response is compared to the Gaussian statistical linearization and the exact solution. The prediction of the time response of the mean of a nonlinear first order system by the use of the statistically linearized eigenvalues is compared to a 300 run Monte Carlo digital solution.
publisherThe American Society of Mechanical Engineers (ASME)
titleImproved Statistical Linearization for Analysis and Control of Nonlinear Stochastic Systems: Part I: An Extended Statistical Linearization Technique
typeJournal Paper
journal volume103
journal issue1
journal titleJournal of Dynamic Systems, Measurement, and Control
identifier doi10.1115/1.3139636
journal fristpage14
journal lastpage21
identifier eissn1528-9028
treeJournal of Dynamic Systems, Measurement, and Control:;1981:;volume( 103 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record