YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dispersion in Laminar Flow Through Tubes by Simultaneous Diffusion and Convection

    Source: Journal of Applied Mechanics:;1981:;volume( 048 ):;issue: 002::page 217
    Author:
    J. S. Yu
    DOI: 10.1115/1.3157600
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The dispersion of a small quantity of a solute initially injected into a round tube in which steady-state laminar flow exists is critically examined. It is shown that the mean solute concentration profile is far from being symmetric at small dimensionless times after injection. The mean concentration and the axial location at the peak of the profile are presented in detail as functions of time for flow with various Peclet numbers. It is suggested that such results may be useful for determining either the molecular diffusion coefficient or the mean flow velocity or both from experimental measurements. A previously established criterion in terms of the Peclet number for determining the minimum dimensionless time required for applying Taylor’s theory of dispersion is graphically illustrated. Although the complete generalized dispersion equation of Gill’s model is exact, the truncated two-term form of it with time-dependent coefficients is exact only asymptotically at large values of time; however, at small Peclet numbers, the two-term approximation is shown graphically to be reasonably satisfactory over all values of time. The exact series solution is compared with the solution of Tseng and Besant through the use of Fourier transform.
    keyword(s): Laminar flow , Convection , Diffusion (Physics) , Flow (Dynamics) , Measurement , Approximation , Equations , Fourier transforms , Functions AND Steady state ,
    • Download: (751.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dispersion in Laminar Flow Through Tubes by Simultaneous Diffusion and Convection

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/94146
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorJ. S. Yu
    date accessioned2017-05-08T23:10:22Z
    date available2017-05-08T23:10:22Z
    date copyrightJune, 1981
    date issued1981
    identifier issn0021-8936
    identifier otherJAMCAV-26177#217_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/94146
    description abstractThe dispersion of a small quantity of a solute initially injected into a round tube in which steady-state laminar flow exists is critically examined. It is shown that the mean solute concentration profile is far from being symmetric at small dimensionless times after injection. The mean concentration and the axial location at the peak of the profile are presented in detail as functions of time for flow with various Peclet numbers. It is suggested that such results may be useful for determining either the molecular diffusion coefficient or the mean flow velocity or both from experimental measurements. A previously established criterion in terms of the Peclet number for determining the minimum dimensionless time required for applying Taylor’s theory of dispersion is graphically illustrated. Although the complete generalized dispersion equation of Gill’s model is exact, the truncated two-term form of it with time-dependent coefficients is exact only asymptotically at large values of time; however, at small Peclet numbers, the two-term approximation is shown graphically to be reasonably satisfactory over all values of time. The exact series solution is compared with the solution of Tseng and Besant through the use of Fourier transform.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDispersion in Laminar Flow Through Tubes by Simultaneous Diffusion and Convection
    typeJournal Paper
    journal volume48
    journal issue2
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.3157600
    journal fristpage217
    journal lastpage223
    identifier eissn1528-9036
    keywordsLaminar flow
    keywordsConvection
    keywordsDiffusion (Physics)
    keywordsFlow (Dynamics)
    keywordsMeasurement
    keywordsApproximation
    keywordsEquations
    keywordsFourier transforms
    keywordsFunctions AND Steady state
    treeJournal of Applied Mechanics:;1981:;volume( 048 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian