YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Application of Mixture Theory to Particulate Sedimentation

    Source: Journal of Applied Mechanics:;1980:;volume( 047 ):;issue: 002::page 261
    Author:
    C. D. Hill
    ,
    D. S. Drumheller
    ,
    A. Bedford
    DOI: 10.1115/1.3153652
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Equations for two-phase flow are used to analyze the one-dimensional sedimentation of solid particles in a stationary container of liquid. A derivation of the equations of motion is presented which is based upon Hamilton’s extended variational principle. The resulting equations contain diffusivity terms, which are linear in the gradient of the particle concentration. It is shown that the solution of the equations for steady sedimentation is stable under small perturbations. Finally, finite-difference solutions of the equations are compared to the data of Whelan, Huang, and Copley for blood sedimentation.
    keyword(s): Particulate matter , Mixtures , Sedimentation , Equations , Gradients , Variational principles , Equations of motion , Blood , Two-phase flow AND Containers ,
    • Download: (485.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Application of Mixture Theory to Particulate Sedimentation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/92881
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorC. D. Hill
    contributor authorD. S. Drumheller
    contributor authorA. Bedford
    date accessioned2017-05-08T23:08:00Z
    date available2017-05-08T23:08:00Z
    date copyrightJune, 1980
    date issued1980
    identifier issn0021-8936
    identifier otherJAMCAV-26145#261_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/92881
    description abstractEquations for two-phase flow are used to analyze the one-dimensional sedimentation of solid particles in a stationary container of liquid. A derivation of the equations of motion is presented which is based upon Hamilton’s extended variational principle. The resulting equations contain diffusivity terms, which are linear in the gradient of the particle concentration. It is shown that the solution of the equations for steady sedimentation is stable under small perturbations. Finally, finite-difference solutions of the equations are compared to the data of Whelan, Huang, and Copley for blood sedimentation.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Application of Mixture Theory to Particulate Sedimentation
    typeJournal Paper
    journal volume47
    journal issue2
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.3153652
    journal fristpage261
    journal lastpage265
    identifier eissn1528-9036
    keywordsParticulate matter
    keywordsMixtures
    keywordsSedimentation
    keywordsEquations
    keywordsGradients
    keywordsVariational principles
    keywordsEquations of motion
    keywordsBlood
    keywordsTwo-phase flow AND Containers
    treeJournal of Applied Mechanics:;1980:;volume( 047 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian