YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Critical Damping in Linear Discrete Dynamic Systems

    Source: Journal of Applied Mechanics:;1980:;volume( 047 ):;issue: 003::page 627
    Author:
    D. E. Beskos
    ,
    B. A. Boley
    DOI: 10.1115/1.3153744
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Free viscously damped vibrations of linear discrete systems are studied. The amount of damping varies among the various elements of the system resulting in several critical damping possibilities. A general method is developed for determining the “critical damping surfaces” of a system. These surfaces represent the loci of combinations of damping values corresponding to critically damped motions, and thus separate regions of partial or complete underdamping from those of overdamping. The dimension of a critical damping surface is equal to the number of independent amounts of damping present in the system. Three examples presented in detail illustrate the proposed technique and some of the important characteristics of critical damping surfaces.
    keyword(s): Damping , Dynamic systems , Vibration , Discrete systems , Motion AND Dimensions ,
    • Download: (369.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Critical Damping in Linear Discrete Dynamic Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/92840
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorD. E. Beskos
    contributor authorB. A. Boley
    date accessioned2017-05-08T23:07:55Z
    date available2017-05-08T23:07:55Z
    date copyrightSeptember, 1980
    date issued1980
    identifier issn0021-8936
    identifier otherJAMCAV-26152#627_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/92840
    description abstractFree viscously damped vibrations of linear discrete systems are studied. The amount of damping varies among the various elements of the system resulting in several critical damping possibilities. A general method is developed for determining the “critical damping surfaces” of a system. These surfaces represent the loci of combinations of damping values corresponding to critically damped motions, and thus separate regions of partial or complete underdamping from those of overdamping. The dimension of a critical damping surface is equal to the number of independent amounts of damping present in the system. Three examples presented in detail illustrate the proposed technique and some of the important characteristics of critical damping surfaces.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleCritical Damping in Linear Discrete Dynamic Systems
    typeJournal Paper
    journal volume47
    journal issue3
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.3153744
    journal fristpage627
    journal lastpage630
    identifier eissn1528-9036
    keywordsDamping
    keywordsDynamic systems
    keywordsVibration
    keywordsDiscrete systems
    keywordsMotion AND Dimensions
    treeJournal of Applied Mechanics:;1980:;volume( 047 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian