YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Harmonic Wave Propagation in a Periodically Layered, Infinite Elastic Body: Plane Strain, Analytical Results

    Source: Journal of Applied Mechanics:;1979:;volume( 046 ):;issue: 001::page 113
    Author:
    T. J. Delph
    ,
    R. K. Kaul
    ,
    G. Herrmann
    DOI: 10.1115/1.3424481
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The problem of harmonic wave propagation in an unbounded, periodically layered elastic body in a state of plane strain is examined. The dispersion spectrum is shown to be governed by the roots of an 8 × 8 determinant, and represents a surface in frequency-wave number space. The spectrum exhibits the typical stopping band characteristic of wave propagation in a periodic medium. The dispersion equation is shown to uncouple along the ends of the Brillouin zones, and also in the case of wave propagation normal to the layering. The significance of this uncoupling is examined. Also, the asymptotic behavior of the spectrum for large values of the wave numbers is investigated.
    keyword(s): Wave propagation , Plane strain , Spectra (Spectroscopy) , Waves AND Equations ,
    • Download: (554.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Harmonic Wave Propagation in a Periodically Layered, Infinite Elastic Body: Plane Strain, Analytical Results

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/91853
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorT. J. Delph
    contributor authorR. K. Kaul
    contributor authorG. Herrmann
    date accessioned2017-05-08T23:06:15Z
    date available2017-05-08T23:06:15Z
    date copyrightMarch, 1979
    date issued1979
    identifier issn0021-8936
    identifier otherJAMCAV-26112#113_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/91853
    description abstractThe problem of harmonic wave propagation in an unbounded, periodically layered elastic body in a state of plane strain is examined. The dispersion spectrum is shown to be governed by the roots of an 8 × 8 determinant, and represents a surface in frequency-wave number space. The spectrum exhibits the typical stopping band characteristic of wave propagation in a periodic medium. The dispersion equation is shown to uncouple along the ends of the Brillouin zones, and also in the case of wave propagation normal to the layering. The significance of this uncoupling is examined. Also, the asymptotic behavior of the spectrum for large values of the wave numbers is investigated.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHarmonic Wave Propagation in a Periodically Layered, Infinite Elastic Body: Plane Strain, Analytical Results
    typeJournal Paper
    journal volume46
    journal issue1
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.3424481
    journal fristpage113
    journal lastpage119
    identifier eissn1528-9036
    keywordsWave propagation
    keywordsPlane strain
    keywordsSpectra (Spectroscopy)
    keywordsWaves AND Equations
    treeJournal of Applied Mechanics:;1979:;volume( 046 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian