YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Harmonic Wave Propagation in a Periodically Layered, Infinite Elastic Body: Antiplane Strain

    Source: Journal of Applied Mechanics:;1978:;volume( 045 ):;issue: 002::page 343
    Author:
    T. J. Delph
    ,
    G. Herrmann
    ,
    R. K. Kaul
    DOI: 10.1115/1.3424299
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The propagation of horizontally polarized shear waves through a periodically layered elastic medium is analyzed. The dispersion equation is obtained by using Floquet’s theory and is shown to define a surface in frequency-wave number space. The important features of the surface are the passing and stopping bands, where harmonic waves are propagated or attenuated, respectively. Other features of the spectrum, such as uncoupling at the ends of the Brillouin zones, conical points, and asymptotic values at short wavelengths, are also examined.
    keyword(s): Wave propagation , Waves , Shear (Mechanics) , Equations , Wavelength AND Spectra (Spectroscopy) ,
    • Download: (638.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Harmonic Wave Propagation in a Periodically Layered, Infinite Elastic Body: Antiplane Strain

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/90718
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorT. J. Delph
    contributor authorG. Herrmann
    contributor authorR. K. Kaul
    date accessioned2017-05-08T23:04:17Z
    date available2017-05-08T23:04:17Z
    date copyrightJune, 1978
    date issued1978
    identifier issn0021-8936
    identifier otherJAMCAV-26093#343_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/90718
    description abstractThe propagation of horizontally polarized shear waves through a periodically layered elastic medium is analyzed. The dispersion equation is obtained by using Floquet’s theory and is shown to define a surface in frequency-wave number space. The important features of the surface are the passing and stopping bands, where harmonic waves are propagated or attenuated, respectively. Other features of the spectrum, such as uncoupling at the ends of the Brillouin zones, conical points, and asymptotic values at short wavelengths, are also examined.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHarmonic Wave Propagation in a Periodically Layered, Infinite Elastic Body: Antiplane Strain
    typeJournal Paper
    journal volume45
    journal issue2
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.3424299
    journal fristpage343
    journal lastpage349
    identifier eissn1528-9036
    keywordsWave propagation
    keywordsWaves
    keywordsShear (Mechanics)
    keywordsEquations
    keywordsWavelength AND Spectra (Spectroscopy)
    treeJournal of Applied Mechanics:;1978:;volume( 045 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian