YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Analysis of Time-Dependent Inelastic Deformation in Metallic Media Using the Boundary-Integral Equation Method

    Source: Journal of Applied Mechanics:;1978:;volume( 045 ):;issue: 004::page 785
    Author:
    S. Mukherjee
    ,
    V. Kumar
    DOI: 10.1115/1.3424419
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A numerical analysis procedure using the boundary-integral equation method is presented for the solution of problems of time-dependent inelastic deformation in planar metallic bodies. The formulation allows the use of both classical creep theories as well as newer theories of inelastic deformation using state variables. Numerical results are presented for plane stress problems using either the power law equations of creep or the state variable theory due to Hart. Comparison of BIE and analytical methods for simple problems shows good agreement. Other features of the numerical solutions of more complicated problems are discussed in the paper.
    keyword(s): Deformation , Numerical analysis , Equations , Creep , Stress AND Analytical methods ,
    • Download: (593.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Analysis of Time-Dependent Inelastic Deformation in Metallic Media Using the Boundary-Integral Equation Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/90573
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorS. Mukherjee
    contributor authorV. Kumar
    date accessioned2017-05-08T23:04:01Z
    date available2017-05-08T23:04:01Z
    date copyrightDecember, 1978
    date issued1978
    identifier issn0021-8936
    identifier otherJAMCAV-26103#785_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/90573
    description abstractA numerical analysis procedure using the boundary-integral equation method is presented for the solution of problems of time-dependent inelastic deformation in planar metallic bodies. The formulation allows the use of both classical creep theories as well as newer theories of inelastic deformation using state variables. Numerical results are presented for plane stress problems using either the power law equations of creep or the state variable theory due to Hart. Comparison of BIE and analytical methods for simple problems shows good agreement. Other features of the numerical solutions of more complicated problems are discussed in the paper.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Analysis of Time-Dependent Inelastic Deformation in Metallic Media Using the Boundary-Integral Equation Method
    typeJournal Paper
    journal volume45
    journal issue4
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.3424419
    journal fristpage785
    journal lastpage790
    identifier eissn1528-9036
    keywordsDeformation
    keywordsNumerical analysis
    keywordsEquations
    keywordsCreep
    keywordsStress AND Analytical methods
    treeJournal of Applied Mechanics:;1978:;volume( 045 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian