YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Self-Consistent Approach to Multiple Scattering by Elastic Ellipsoidal Inclusions

    Source: Journal of Applied Mechanics:;1977:;volume( 044 ):;issue: 004::page 657
    Author:
    S. K. Datta
    DOI: 10.1115/1.3424153
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper deals with the scattering of plane longitudinal and shear waves by a distribution of elastic ellipsoidal inclusions. The scattered field is determined correct to O(ε3 ) where ε is a nondimensional wave number, assumed small. Assuming then that the distribution of scatterer centers is random homogeneous function of position and using a self-consistent (“quasi-crystalline”) approximation effective wave speeds are determined for the case of preferred orientation. Various limiting cases, viz., spherical inclusions and voids, elliptic and penny-shaped cracks, and fluid-filled cavities, are derived.
    keyword(s): Radiation scattering , Electromagnetic scattering , Waves , Fluids , Shear (Mechanics) , Fracture (Materials) , Approximation AND Cavities ,
    • Download: (476.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Self-Consistent Approach to Multiple Scattering by Elastic Ellipsoidal Inclusions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/89434
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorS. K. Datta
    date accessioned2017-05-08T23:02:07Z
    date available2017-05-08T23:02:07Z
    date copyrightDecember, 1977
    date issued1977
    identifier issn0021-8936
    identifier otherJAMCAV-26081#657_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/89434
    description abstractThis paper deals with the scattering of plane longitudinal and shear waves by a distribution of elastic ellipsoidal inclusions. The scattered field is determined correct to O(ε3 ) where ε is a nondimensional wave number, assumed small. Assuming then that the distribution of scatterer centers is random homogeneous function of position and using a self-consistent (“quasi-crystalline”) approximation effective wave speeds are determined for the case of preferred orientation. Various limiting cases, viz., spherical inclusions and voids, elliptic and penny-shaped cracks, and fluid-filled cavities, are derived.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Self-Consistent Approach to Multiple Scattering by Elastic Ellipsoidal Inclusions
    typeJournal Paper
    journal volume44
    journal issue4
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.3424153
    journal fristpage657
    journal lastpage662
    identifier eissn1528-9036
    keywordsRadiation scattering
    keywordsElectromagnetic scattering
    keywordsWaves
    keywordsFluids
    keywordsShear (Mechanics)
    keywordsFracture (Materials)
    keywordsApproximation AND Cavities
    treeJournal of Applied Mechanics:;1977:;volume( 044 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian