YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    In Situ Soil Response to Vibratory Loading and Its Relationship to Roller-Measured Soil Stiffness

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2009:;Volume ( 135 ):;issue: 008
    Author:
    Michael A. Mooney
    ,
    Robert V. Rinehart
    DOI: 10.1061/(ASCE)GT.1943-5606.0000046
    Publisher: American Society of Civil Engineers
    Abstract: An investigation was conducted to characterize and relate in situ soil stress-strain behavior to roller-measured soil stiffness. Continuous assessment of soil stiffness via roller vibration monitoring has the potential to significantly advance performance based quality assurance of earthwork. One vertically homogeneous and two layered test beds were carefully constructed with embedded sensors for the field testing program. Total normal stress and strain measurements at multiple depths reveal complex triaxial soil behavior during vibratory roller loading. Measured cyclic strain amplitudes were 15–25% of those measured during static roller passes due to viscoelasticity and curved drum/soil interaction. Low amplitude vibratory roller loading induces nonlinear in situ modulus behavior. Roller-measured stiffness and its dependence on excitation force is influenced by the stress-dependent modulus function of each soil, the varying drum/soil contact area, and by layer characteristics (modulus ratio, thickness) when layering is present. On vertically homogeneous clayey sand, roller-measured stiffness decreased with increasing excitation force, a behavior attributed to stress-dependent modulus reduction observed in situ. On the crushed rock over silt test bed, roller-measured stiffness increased with increasing excitation force despite the mild stress-dependent modulus reduction observed in the crushed rock. In this case, the stiffer crushed rock takes on a greater portion of the load, resulting in the increase in roller-measured stiffness.
    • Download: (1.189Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      In Situ Soil Response to Vibratory Loading and Its Relationship to Roller-Measured Soil Stiffness

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/61823
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorMichael A. Mooney
    contributor authorRobert V. Rinehart
    date accessioned2017-05-08T21:46:20Z
    date available2017-05-08T21:46:20Z
    date copyrightAugust 2009
    date issued2009
    identifier other%28asce%29gt%2E1943-5606%2E0000060.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/61823
    description abstractAn investigation was conducted to characterize and relate in situ soil stress-strain behavior to roller-measured soil stiffness. Continuous assessment of soil stiffness via roller vibration monitoring has the potential to significantly advance performance based quality assurance of earthwork. One vertically homogeneous and two layered test beds were carefully constructed with embedded sensors for the field testing program. Total normal stress and strain measurements at multiple depths reveal complex triaxial soil behavior during vibratory roller loading. Measured cyclic strain amplitudes were 15–25% of those measured during static roller passes due to viscoelasticity and curved drum/soil interaction. Low amplitude vibratory roller loading induces nonlinear in situ modulus behavior. Roller-measured stiffness and its dependence on excitation force is influenced by the stress-dependent modulus function of each soil, the varying drum/soil contact area, and by layer characteristics (modulus ratio, thickness) when layering is present. On vertically homogeneous clayey sand, roller-measured stiffness decreased with increasing excitation force, a behavior attributed to stress-dependent modulus reduction observed in situ. On the crushed rock over silt test bed, roller-measured stiffness increased with increasing excitation force despite the mild stress-dependent modulus reduction observed in the crushed rock. In this case, the stiffer crushed rock takes on a greater portion of the load, resulting in the increase in roller-measured stiffness.
    publisherAmerican Society of Civil Engineers
    titleIn Situ Soil Response to Vibratory Loading and Its Relationship to Roller-Measured Soil Stiffness
    typeJournal Paper
    journal volume135
    journal issue8
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0000046
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2009:;Volume ( 135 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian