Show simple item record

contributor authorMichael A. Mooney
contributor authorRobert V. Rinehart
date accessioned2017-05-08T21:46:20Z
date available2017-05-08T21:46:20Z
date copyrightAugust 2009
date issued2009
identifier other%28asce%29gt%2E1943-5606%2E0000060.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/61823
description abstractAn investigation was conducted to characterize and relate in situ soil stress-strain behavior to roller-measured soil stiffness. Continuous assessment of soil stiffness via roller vibration monitoring has the potential to significantly advance performance based quality assurance of earthwork. One vertically homogeneous and two layered test beds were carefully constructed with embedded sensors for the field testing program. Total normal stress and strain measurements at multiple depths reveal complex triaxial soil behavior during vibratory roller loading. Measured cyclic strain amplitudes were 15–25% of those measured during static roller passes due to viscoelasticity and curved drum/soil interaction. Low amplitude vibratory roller loading induces nonlinear in situ modulus behavior. Roller-measured stiffness and its dependence on excitation force is influenced by the stress-dependent modulus function of each soil, the varying drum/soil contact area, and by layer characteristics (modulus ratio, thickness) when layering is present. On vertically homogeneous clayey sand, roller-measured stiffness decreased with increasing excitation force, a behavior attributed to stress-dependent modulus reduction observed in situ. On the crushed rock over silt test bed, roller-measured stiffness increased with increasing excitation force despite the mild stress-dependent modulus reduction observed in the crushed rock. In this case, the stiffer crushed rock takes on a greater portion of the load, resulting in the increase in roller-measured stiffness.
publisherAmerican Society of Civil Engineers
titleIn Situ Soil Response to Vibratory Loading and Its Relationship to Roller-Measured Soil Stiffness
typeJournal Paper
journal volume135
journal issue8
journal titleJournal of Geotechnical and Geoenvironmental Engineering
identifier doi10.1061/(ASCE)GT.1943-5606.0000046
treeJournal of Geotechnical and Geoenvironmental Engineering:;2009:;Volume ( 135 ):;issue: 008
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record