YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASME Letters in Dynamic Systems and Control
    • View Item
    •   YE&T Library
    • ASME
    • ASME Letters in Dynamic Systems and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Investigation into the Viability of Cell-Level Temperature Control in Lithium-Ion Battery Packs1

    Source: ASME Letters in Dynamic Systems and Control:;2024:;volume( 005 ):;issue: 001::page 11005-1
    Author:
    Abadie, Preston T.
    ,
    Docimo, Donald J.
    DOI: 10.1115/1.4066514
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This article focuses on the thermal management and temperature balancing of lithium-ion battery packs. As society transitions to relying more heavily on renewable energy, the need for energy storage rises considerably, as storage facilitates power regulation between these sources and the grid. Lithium-ion batteries are leading the market for energy storage options, but their properties are temperature sensitive, with thermal abuse resulting in shortened pack lifetime and possible safety issues. Current battery thermal management systems (BTMS) are implemented in a number of ways to ensure consistent and reliable operation. However, they are typically limited in architecture and restricted in ability to attend to temperature gradients. This work proposes a BTMS topology that permits control of the individual cooling received by a cell in a pack. First, an analysis is done using timescale separation to confirm that cell-level temperature control is capable of extending the lifetime of a pack as compared to pack-level control. The analysis is used to guide the gain tuning of a state feedback controller, which directs more cooling effort to cells of higher temperatures. Validation of the BTMS topology and control is performed through the simulation of a battery pack, with variations in total cooling power and resistance heterogeneity. The outcome of the validation studies indicates that the proposed BTMS configuration is better equipped to reduce temperature differences and extend pack life. This benefit increases as total input power increases, giving the controller more freedom to cool unhealthy cells while remaining within power constraints.
    • Download: (611.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Investigation into the Viability of Cell-Level Temperature Control in Lithium-Ion Battery Packs1

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4308646
    Collections
    • ASME Letters in Dynamic Systems and Control

    Show full item record

    contributor authorAbadie, Preston T.
    contributor authorDocimo, Donald J.
    date accessioned2025-08-20T09:39:48Z
    date available2025-08-20T09:39:48Z
    date copyright10/16/2024 12:00:00 AM
    date issued2024
    identifier issn2689-6117
    identifier otheraldsc_5_1_011005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4308646
    description abstractThis article focuses on the thermal management and temperature balancing of lithium-ion battery packs. As society transitions to relying more heavily on renewable energy, the need for energy storage rises considerably, as storage facilitates power regulation between these sources and the grid. Lithium-ion batteries are leading the market for energy storage options, but their properties are temperature sensitive, with thermal abuse resulting in shortened pack lifetime and possible safety issues. Current battery thermal management systems (BTMS) are implemented in a number of ways to ensure consistent and reliable operation. However, they are typically limited in architecture and restricted in ability to attend to temperature gradients. This work proposes a BTMS topology that permits control of the individual cooling received by a cell in a pack. First, an analysis is done using timescale separation to confirm that cell-level temperature control is capable of extending the lifetime of a pack as compared to pack-level control. The analysis is used to guide the gain tuning of a state feedback controller, which directs more cooling effort to cells of higher temperatures. Validation of the BTMS topology and control is performed through the simulation of a battery pack, with variations in total cooling power and resistance heterogeneity. The outcome of the validation studies indicates that the proposed BTMS configuration is better equipped to reduce temperature differences and extend pack life. This benefit increases as total input power increases, giving the controller more freedom to cool unhealthy cells while remaining within power constraints.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Investigation into the Viability of Cell-Level Temperature Control in Lithium-Ion Battery Packs1
    typeJournal Paper
    journal volume5
    journal issue1
    journal titleASME Letters in Dynamic Systems and Control
    identifier doi10.1115/1.4066514
    journal fristpage11005-1
    journal lastpage11005-6
    page6
    treeASME Letters in Dynamic Systems and Control:;2024:;volume( 005 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian