YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology, Part A: Sustainable and Renewable Energy
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology, Part A: Sustainable and Renewable Energy
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling Lithium Adsorption in Column Chromatography Applications With Granulated Li/Al-Layered Double Hydroxide Chlorides: A Lattice Boltzmann Modeling Approach

    Source: Journal of Energy Resources Technology, Part A: Sustainable and Renewable Energy:;2025:;volume( 001 ):;issue: 004::page 41705-1
    Author:
    Lee, Kyung Jae
    DOI: 10.1115/1.4068180
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Given the crucial role of lithium (Li) in clean energy transition through effective decarbonization of various energy sectors, enhancing and diversifying the source of Li is regarded as an urgent priority. Producing Li from formation brines is a promising solution due to their abundant resources and environmental friendlessness to extract. In this study, we focus on Li extraction with an ion-sieve method utilizing Li/aluminum-layered double hydroxide chlorides (Li/Al-LDH), by its significant stability, great scalability, and favorable techno-economic feasibility. In this regard, we set our goal to numerically quantify the adsorption performance of granulated Li/Al-LDH adsorbent for Li+ by quantitatively analyzing the impacts of controlling factors. To achieve the goal, we develop our numerical capability of addressing brine injection, fluid flow, component transport, and adsorption in column chromatography application, based on lattice Boltzmann method (LBM) modeling. To quantify the impact of operational conditions of Li+ adsorption performance with granulated Li/Al-LDH adsorbent, various values of porosity and radius of granule, Li+ concentration in injected brine, and brine injection velocity are considered. From the numerical simulations and coupled local sensitivity analysis, the radius of the adsorbent granule is found to be most influential on the adsorption performance, followed by granule porosity, concentration of Li+ in injected brine, and injection velocity. This study provides the conceptual and essential information on the quantified impact of various operational conditions on Li+ adsorption performance that can be used to optimize the design of Li/Al-LDH adsorbent granule and column chromatography strategy, as achieving the techno-economically feasible Li+ extraction from formation brines.
    • Download: (2.342Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling Lithium Adsorption in Column Chromatography Applications With Granulated Li/Al-Layered Double Hydroxide Chlorides: A Lattice Boltzmann Modeling Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4308334
    Collections
    • Journal of Energy Resources Technology, Part A: Sustainable and Renewable Energy

    Show full item record

    contributor authorLee, Kyung Jae
    date accessioned2025-08-20T09:28:21Z
    date available2025-08-20T09:28:21Z
    date copyright4/3/2025 12:00:00 AM
    date issued2025
    identifier issn2997-0253
    identifier otherjerta-24-1212.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4308334
    description abstractGiven the crucial role of lithium (Li) in clean energy transition through effective decarbonization of various energy sectors, enhancing and diversifying the source of Li is regarded as an urgent priority. Producing Li from formation brines is a promising solution due to their abundant resources and environmental friendlessness to extract. In this study, we focus on Li extraction with an ion-sieve method utilizing Li/aluminum-layered double hydroxide chlorides (Li/Al-LDH), by its significant stability, great scalability, and favorable techno-economic feasibility. In this regard, we set our goal to numerically quantify the adsorption performance of granulated Li/Al-LDH adsorbent for Li+ by quantitatively analyzing the impacts of controlling factors. To achieve the goal, we develop our numerical capability of addressing brine injection, fluid flow, component transport, and adsorption in column chromatography application, based on lattice Boltzmann method (LBM) modeling. To quantify the impact of operational conditions of Li+ adsorption performance with granulated Li/Al-LDH adsorbent, various values of porosity and radius of granule, Li+ concentration in injected brine, and brine injection velocity are considered. From the numerical simulations and coupled local sensitivity analysis, the radius of the adsorbent granule is found to be most influential on the adsorption performance, followed by granule porosity, concentration of Li+ in injected brine, and injection velocity. This study provides the conceptual and essential information on the quantified impact of various operational conditions on Li+ adsorption performance that can be used to optimize the design of Li/Al-LDH adsorbent granule and column chromatography strategy, as achieving the techno-economically feasible Li+ extraction from formation brines.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleModeling Lithium Adsorption in Column Chromatography Applications With Granulated Li/Al-Layered Double Hydroxide Chlorides: A Lattice Boltzmann Modeling Approach
    typeJournal Paper
    journal volume1
    journal issue4
    journal titleJournal of Energy Resources Technology, Part A: Sustainable and Renewable Energy
    identifier doi10.1115/1.4068180
    journal fristpage41705-1
    journal lastpage41705-15
    page15
    treeJournal of Energy Resources Technology, Part A: Sustainable and Renewable Energy:;2025:;volume( 001 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian